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ABSTRACT

By two well-known results, one of Ax, one of Lubotzky and van den Dries,
a profinite group is projective iff it is isomorphic to the absolute Galois
group of a pseudo-algebraically closed field. This paper gives an analo-
gous characterization of relatively projective profinite groups as absolute
Galois groups of regularly closed fields.
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Introduction

The absolute Galois group Gr of a field F is the Galois group of a separable
closure F*¢P of F over F', considered as profinite group.

The free product Gq x - -- x G, of profinite groups Gy, ...,Gy, is a profinite
group G allowing embeddings ¢; : G; — G (i = 1,...,n) such that, given any
homomorphisms ~; : G; —+ H (¢ =1,...,n) into a profinite group H, there is a
unique homomorphism v : G — H with v, = y o¢; for each .

This paper has two targets: one is to give a simplified proof of the fact that the
free product of finitely many absolute Galois groups is again an absolute Galois
group, and the other is to describe the absolute Galois group of multiply valued
fields satisfying a local-global principle for rational points on varieties.

THEOREM 1: Given fields Fy,..., F,, there is a field F of characteristic 0 with
Gr 2 Gp, x--+*GF,. Moreover, if char Fy = --- = char F,, = p > 0, F can also
be chosen to have characteristic p.

We call a profinite group G projective [strongly projective] relative to
subgroups G4i,...,G, of G if each epimorphism #: H — G of profinite groups
which splits locally (i.e., Vidp;: G; — H with 7 o p; = idg,) splits globally (i.e.,
Jp: G — H with mo p = idg [and for each i, p(G;) is conjugate to p;(G;) in HJ).

If G is projective relative to subgroups Gi,...,Gy,, then G embeds into
G * -+ x G, » F, where F is some free profinite group (Proposition 1.4(5)).
Since any free profinite group occurs as absolute Galois group of some field of any
prescribed characteristic, and since subgroups of absolute Galois groups are
absolute Galois groups, Theorem 1 immediately generalizes to

THEOREM 1': Let G be a profinite group which is projective relative to subgroups
G1,...,Gy and assume that each G; is an absolute Galois group. Then G is an
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absolute Galois group of some field of characteristic 0. Moreover, if all G; can be
realized over fields of the same fixed positive characteristic, then so can G.

Theorem 1, which answers Problem 18 from [J}, should be attributed to Florian
Pop, though he never states it: Theorem 1 is a simple consequence of Theorem
3.4 in [Pol], which even allows one to generalize Theorem 1 to certain infinite
free products of absolute Galois groups. The theorem was first stated and proved
quite differently, in [M] in the case where the G; are of countable rank. Then
(without the ‘Moreover’), Ershov was the first to publish a proof ([Er2], Theorem
3), which is more in the spirit of Pop’s proof.

In all approaches, the technique for realizing free products of given absolute Ga-
lois groups is valuation theoretic: find a field F where each of the given absolute
Galois groups occurs as decomposition subgroup of Gg w.r.t. some valuation on
F, and make sure that these valuations are ‘in sufficiently general position’ to en-
sure that the decomposition subgroups freely generate a subgroup of Gg. In [M],
this is achieved by ‘probabilistic’ methods: if these valuations live on a countable
Hilbertian field, then, with probability 1, random conjugates of the decompo-
sition subgroups generate a free product ([Ge}, Theorem 4.1). This method,
however, only works for Galois groups which are isomorphic to subgroups of ab-
solute Galois groups of countable Hilbertian fields, i.e., for countably generated
absolute Galois groups. In [Pol] and [Er2], the valuations were put in sufficiently
general position by constructing a field which is also regularly closed (see below)
w.r.t. finitely many valuations having the prescribed decomposition groups.

Many of the arguments in our proof can be found in [Pol] and [Er2], but our
proof becomes easier for three reasons: one is that it seems unnecessary to con-
struct a multiply valued field which is regularly closed, the second is that we
work with a very handy criterion for profinite groups to be the free product of
given subgroups in terms of solving ‘locally split embedding problems’ (Proposi-
tion 1.2), and, thirdly, we restrict ourselves to fields with a finite (rather than a
boolean) family of valuations and thus avoid all the machinery needed to handle
the more general situation.

Due to our notion of relative projectivity, the passage from
Theorem 1 to Theorem 1’ is rather smooth. That our notion coincides with
Pop’s, where only locally split epimorphisms with finite kernel are required to
split globally, follows from a non-trivial relative analogue (Proposition 1.4) to
Gruenberg’s characterization of projective groups ([Gr], Proposition 1). The key
idea is to replace the somewhat unprofinite use of Zorn’s Lemma in Gruenberg’s
proof by a profinite argument.
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Our second target is to improve another result of Pop and Ershov on the
absolute Galois group of regularly closed fields. Let us recall that an n-fold valued
field (F,v1,...,v,) (with corresponding henselisations Fi, ..., Fy,) is regularly
closed (or pseudo-closed) if it satisfies a local-global principle for rational
points on varieties, i.e., if every absolutely irreducible {(affine) F-variety with a
simple Fj-rational point for each ¢ has an F-rational point. We shall prove

THEOREM 2: Let (F,v1,...,v,) be a regularly closed n-fold valued field, Ilet

Fy,...,F, be henselisations of F w.r.t. vy,...,v, resp., and assume that
v1,...,U, are independent. @ Then Gp is strongly projective relative to
Gr,...,GF,.

Using the variant of Theorem 1’ which — as Theorem 3.4 in [P1] — realizes
strongly relative projective groups over regularly closed fields (Corollary 5.2),
Theorem 2 can immediately be strengthened to the following relative analogue of
the Ax-Lubotzky/van den Dries characterization of projective profinite groups
as absolute Galois groups of PAC-fields ([A], p. 269, and [LvD], 4.8):

THEOREM 2': Let G be a profinite group with subgroups Gy, ...,G, where each
G; is isomorphic to some absolute Galois group. Then G is strongly projective
relative to G1,...,Gy, iff G is isomorphic to the absolute Galois group of a reg-
ularly closed n-fold valued field (F,vy,...,v,), where vy, ..., v, are independent
and where, for each i, the isomorphism G = Gg maps G; onto a decomposition
subgroup of Gg w.r.t. v;.

Under the hypothesis of our Theorem 2, [Pol], Theorem 3.3 resp. [Po2],
Theorem 3.2, comes to the weaker conclusion that Gg is projective relative
to Gry,...,GF,, and only under additional hypotheses (e.g., that the G; be
isomorphic to absolute Galois groups of real or p-adically closed fields) strong
projectivity has been proved ([Pol], Theorem 1.2). Ershov shows Theorem 2
([Erl], Thm. 3) for what he calls ‘RC*-fields’, which are special regularly closed
fields, but not all regularly closed fields are RC*-fields. Both Pop’s and Ershov’s
results, however, deal with certain infinite families of valuations, not just finite
ones. We will extend our Theorem 2 to this setting later.

What made our progress on Pop’s and Ershov’s achievements possible, is the
observation that solvability of finite embedding problems for absolute Galois
groups is an eristential first-order property in the language of fields (Obser-
vation 5.3), and that the same holds for the corresponding ‘relative embedding
problems’ in the language of n-fold valued fields (Proposition 5.4). This is based
on a careful analysis of decomposition subfields of finite Galois extensions which
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goes beyond usual ramification theory (Lemmas 2.8-2.10) and which may be of
independent interest for those working on the inverse Galois problem. For ex-
ample, it turns out that solvability of (relative) embedding problems over Q is a
diophantine property (Corollary 5.5).

ACKNOWLEDGEMENT: This paper was initiated by an invitation of Moshe
Jarden to the Tel Aviv University in February/March 2000. I am very grate-
ful to him and to Dan Haran for stimulating discussions on Theorem 1 of the
present paper.

1. Locally split embedding problems

Let us extract from [Pol], assertion 1.1, and from Ershov’s analysis of ‘projec-
tive A*-groups’ what seem to be the ‘correct’ notions for dealing with [strongly]
relatively projective profinite groups:

Definition 1.1: Let G be a profinite group and let G4, ..., G, be subgroups of G.
Then a locally split embedding problem for G w.r.t. Gy,...,G,, is given by a
pair of epimorphisms o: G — B, 3: A — B, where A and B are profinite groups,
and by homomorphisms §;: a(G;) — A with fo 8 = idy@g,) (1 = 1,...,n).
The embedding problem is called finite, if A is finite. It is called reduced, if
A=<impB,...,imfB, >.

A solution of such a locally split embedding problem is a homomorphism
~v: G — A with « = Bo~. If v is surjective, it is called a proper solution. A
solution v is called locally exact if v | G; = B;0a | G; foreach i = 1,... n.
And a solution # is called a locally conjugate solution if v(G;) is conjugate to
imp; in Aforeachi=1,...,n.

1.1 CHARACTERIZING FREE PRODUCTS VIA LOCALLY SPLIT EMBEDDING PROB-
LEMS. Recall that a profinite group G is the free product G = Gy x---x G,
of the subgroups Gi,...,G,, < G, if any given homomorphisms v;: G; —+ H
(i = 1,...,n) into a profinite group H uniquely extend to a homomorphism
v: G — H (ie., v | G; = v; for each i). Therefore, every finite locally split
embedding problem for G = Gy x--- x G, w.r.t., Gy,...,G, has a locally exact
solution: take H = A and ; = ; o | G;. We now prove the converse:

ProposITION 1.2: Let G =< Gy,...,G, > be a profinite group generated by
subgroups G1,...,G, < G and assume that every finite reduced locally split
embedding problem for G w.r.t. Gi,...,Gy, has a locally exact solution. Then
G=G % xGy.
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Proof: Let GY,...,G", be pairwise disjoint isomorphic copies of Gy,..., Gy, re-
spectively, fix isomorphisms p;: G; — G}, (i=1,...,n),let G' := G *-- %G, and
let p: G’ — G be the (unique) homomorphism with p | G; = p;  fori =1,...,n.
We first prove the following

CLAIM: Given any epimorphism o: G — B onto a finite group B and given
isomorphisms ¢;: &(G;) — B} (i =1,...,n), where the B} are pairwise disjoint,
there is a unique epimorphism ¢: G — B’ := B} x--- x B}, such that for each 1,

1/)|Gz:qbzoa|Gl

To see this, let ¢: B’ — B be the unique homomorphism with ¢ | B = ¢ *.
Then for any open normal subgroup N <1 B’ with N < ker ¢ we obtain a locally
split reduced embedding problem given by a: G — B, : A — B and §;: o(G;) —
A, where A := Ay := B’/N with canonical projection ny: B’ —» A and where
Bi=mnod; (i=1,...,n).

By assumption, any such embedding problem has a locally exact solution, so
there is some y = yn: G - A withy | G; = Bioa |G; (i =1,...,n). Since B’ is
the inverse limit of these Ay, and since the corresponding vy are unique (G =
< Gy,...,Gy, >) and compatible, the inverse limit ¢ = im, yy: G — B’ exists
and, for each ¢, ¥ | G; = lim,_ Bioa |G;=dioa|G;. As G =< Gq,...,Gy >,
1) is also onto and unique, and the claim is proved.

Now associate to any open normal subgroup M <1 G the canonical projection
ap: G — By = G/M and the projection oy: G' — Bl = B;\J,l * - -~*B5M’n
induced by the canonical projections G} —» By, ; := G{/pi(GiNM) (i=1,...,n).
Then, for each 4, there is a (unique) isomorphism @uri: am(Gi) — Bjy, such
that oy, | G% = éai o an o p;t. The claim thus gives a unique epimorphism
Ym: G — Biyy with ¢ | Gy = o anm | G = oy 0 ps.

Since G = lim,_ ap (G), we have G; = lim_ ap (G;), so

G} = lim oy (G)
and G’ = lim o, (G}) = lim_ o,(G'). By the uniqueness of the ¢ps we thus
obtain an inverse system of commutative diagrams

a—rsq

'
Qg Qpr
Y
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with ¥ | Gi = &)y, 0 p;. Thus, the inverse limit ¢ = lim ¢p: G — G’ exists
and ¢ | G; = lime oy, 0 p; = p; for each 5. Therefore, po ¢y = idg and p is an
isomorphism. |

For the realization of free products of absolute Galois groups as absolute Galois
groups (Theorem 1), the free-product criterion of Proposition 1.2 is good enough.
In some situations, however, we require a criterion which is easier to check.

ProprosiTION 1.3: Let G =< G41,...,G, > be a profinite group generated by
subgroups G1,...,G, < G. Then G = G1%---xG,, iff every finite reduced locally
split embedding problem for G w.r.t. Gy,...,G, has a proper locally conjugate
solution.

Proof: For the non-trivial direction of the proof it suffices, by Proposition 1.2,
that any finite locally split embedding problem for G w.r.t. Gy, ..., G, has a
locally exact solution. So let A, B be finite groups, a: G —» B, f: A -» B
epimorphisms and §;: «(G;) — A homomorphisms with 8o 8; = idyg, (i =
1,...,n). We have to find a homomorphism v: G — A with v | G; = ;o | G;.
Since B =< a(Gy),...,a(Gy,) >, we may assume that our embedding problem
is reduced.

Let Aq,..., A, be pairwise disjoint isomorphic copies of im fBy,...,im B,
respectively, fix isomorphisms #;: im3; — A;, let A’ = Ay x---x 4,, and let
m: A’ — A be the epimorphism with 7 | A; = 77! (i = 1,...,n). Then for any
open normal subgroup N <q A’ with N < ker m we can canonically lift our given lo-
cally split embedding problem from A to Ay := A’/N by setting ay = a: G — B,
By = Bon™N: Ay —» Band By = nyom; 0B alGs) — Ax (i =1,...,n), where

aN: Ay —» A and 7y A/ — An are the canonical projections (so m = ¥ omw):

G
Ly L A R
e

| )]

A; m f3; of

i)

Note that
Anofini=PorNonyomof =pBoromof=ph0p;=idya,:
since wom; | im i = idim g,, and that

<AMPBN s iM PN >=< 7N(A1), ..., 7N (An) >= An.
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By assumption, each of these reduced lifted locally split embedding problems
has a proper locally conjugate solution, i.e., there is an epimorphism yx: G —
An with ay = By o vy such that yN(G;) is conjugate to imfn; = wn(A4;)
for each i. Moreover, there are only finitely many locally conjugate solutions
vn, because vx is uniquely determined by the images yv(G;) (¢ = 1,...,n):
yw/Gi) = a{l(imﬂN,i)a,- for some a; € Ay and By ;o By | im BN = idimpy ;>
so for g € G;

aryv(9)a;t = (Bn,i o Bn)(aivn(9)a; ') = Bw.i(Bn(as)an(9)Bn(a:) ™).

Writing A’ = lim_ Ay with N ranging over all open normal subgroups of A’
with N < ker 7, and writing 3’ := o m, one therefore obtains an epimorphism
v': G - A’ with a = 8 o' such that, for each i, v'(G;) is conjugate to A4; in A’
Moreover, for each i, kerv'NG; = ker aNG;, since A is injective on A; and hence
on the conjugate v'(G;) of A;, and ker @ N G; = ker(w o §; o a) N G;. Therefore,
there is an isomorphism p;: A; — ¥(G;) with 4" | Gy = (psomiofica) | Gs
(i=1,...,n).

Now let p: A’ — A’ be the endomorphism of A" with p | A; = p;. Surjectivity
then passes from 7' to p, and, since A’ is finitely generated (hence small), this
implies that p is an isomorphism.

Thus p~loy: G — A’ is a homomorphism with p~' o7/ | G; =m0 8,00 | G;
(i=1,...,n), and so the induced homomorphism vy = mop~'oy: G — A is the
desired locally exact solution of our locally split embedding problem: for each i,
’Y|Gi=,31'0a|Gi. |

1.2 CHARACTERIZING RELATIVELY PROJECTIVE GROUPS.

PROPOSITION 1.4: Let G be a profinite group with subgroups Gi,...,Gy. Then
the following are equivalent:
(1) G is [strongly] projective relative to G, ...,Gp.
(2) Every embedding problem o: G — B, : A - B with a ‘local’ solution
vi: Gi = A (i.e., a | G; = Boy;) for each i has a ‘global’ solution v: G — A
(i.e., a = Bo~y) [and v(G;) is conjugate to v;(G;) in A for each i].
(3) Every locally split embedding problem for G w.r.t. G1, ..., Gy has a [locally
conjugate] solution.
(4) Every finite locally split embedding problem for G w.r.t. Gy,...,Gy has a
flocally conjugate] solution.
Moreover, any of these conditions implies [is equivalent to]



Vol. 127, 2002 RELATIVELY PROJECTIVE GROUPS 101

(5) There is a free profinite group F with rk F < rk G such that there is an
embedding p: G — Gy *---x G, x F [and, for each i, p(G;) is conjugate to
the factor G; in Gy % -+ *Gp x F].

Proof: (1) = (2): Assume (1) and let a: G — B, 8: A - B define an embedding
problem for G with local solutions v;: G; — A [such that v(G;) is conjugate to
v:(G;)] for each i. Consider the fibre product A xpG := {{a,9) € AXG | B(a) =
a(g)} with the canonical projections m4: AXgG —» A and 7g: AxgG —» G onto
the corresponding coordinate, so @ o mg = o m4. Then 7 has local splittings

pi: G > Axg G

g (7i(g9), 9)

for each 7, and hence, by (1), a global splitting p: G — A xp G [with p(G;)
conjugate to p;(G;) in A xg G, say p(G;) = (p:(G;))(®99]). Now v := mgao0p
is the solution we look for: o« = aongop=Lfomsop = Boy [and v(G;) =
Ta(p(Gs)) = ma((pi(Gi))(@9)) = 4;(G;)% for each ).

(2) = (3): Just observe that any local splitting 3;: a(G;) — A for a locally
split embedding problem a: G — B, f: A - B provides a local solution v; =
Bioa|G;.

(3) = (1): Any epimorphism m: H —» G with local splittings p;: G; — H
defines a locally split embedding problem « = idg, 8 = 7 and §; = p;.

(3) = (4): Clear.

(4) = (1): Assume (4) and let m: H —» G be an epimorphism with local
splittings p;: G; - H (1 =1,...,n).

We first proceed as the proof of [Gr], Proposition 1, and consider the case
where ker 7 is finite. For each ¢, kermNim p; = 1 since mo p; = idg,. As kerw is
finite, there is an open normal subgroup N < H with ker # N Nim p; = 1 for all
i=1,...,n. Hence Nkerm N Nimp, = N and so the induced finite embedding
problem an: G —» G/n(N), (bn =) «n: H/IN — G/m(N) where ay is the
canonical projection and wx(hN) = w(h)x(N) for h € H, is locally split:

kermy N Nimp;/N = (Nkerw N Nimp;)/N = N/N = 1.

Thus, there is a solution yy: G — H/N with mn5 o yxy = an.
Now consider the fibre product

H/N X@G/w(N) G .= {(hN,g) S H/N x G | ﬂN(hN) = aN(g)}

and observe that
e H- H/N X@G/x(N) G

h > (hN,7(h))
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is an embedding, since kerr N N = 1. Now

pI: G— H/N X@/n(N) G
g~ (ww(9),9)

is well-defined (mny(yn(g)) = an(g)) and imp' C ime: for g € G let yn(g) =
hN for some h € H and observe that h can be chosen with 7m(h) = g because
n(h)-7(N)=g-n(N). Hence p:= ¢! op is a splitting for .

[Moreover, if vy is a locally conjugate solution, say

W (Gi) = (Nim pi/N)*¥

for some h; € H, then p/(G;) = (e(Nim p;))*" and so p(G;) is conjugate to
imp; in H.]

Further, let us observe that each [locally conjugate] splitting p of = can be
considered as inverse limit of [l.c.] splittings py of mn, where N runs through
all open normal subgroups of H with kerw N Nim p = 1 (again, such N’s exist
because ker 7 is finite and ker 7 N p(G) = 1). Converseley, any such inverse limit
of [L.c.] compatible splittings of mn gives a splitting of 7. Since each my has only
finitely many splittings, the set of {l.c.] splittings of 7 is an inverse limit of finite
sets, and hence compact.

Now let ker v be arbitrary and consider the family K of normal subgroups
K <1 H which are open subgroups of kerw. Then for each K € K, n induces
a projection wx: H/K — G which splits locally and has a finite kernel, so the
set Ri of [locally conjugate] splittings of mx is non-empty and compact. Now
the R (K € K) form an inverse system of non-empty compact sets. Hence the
inverse limit is non-empty, and any element in it defines a [locally conjugate]
splitting of 7.

(1) = (5): Assuming (1), we can choose a free profinite group F of rk F = rk G
with an epimorphism mg: F — G extending to an epimorphism 7: Gy x - - -« G, *
F — G which maps each free factor G; identically onto the subgroup G; of G.
By (1), = splits globally [in a locally conjugate way] and any such splitting gives
the desired embedding.

[5] = [1]: Assume [5]. Then, by the subgroup theorem of Haran ([Hal,
Theorem 5.1), p(G) is strongly projective relative to p(G1),-..,p(G,), since
Gy *---x Gy x F is strongly projective relative to G1,...,G,. (Compare the
following remark). |
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Remark 1.5: As the proposition shows, our notions of relative [strong] projectiv-
ity coincide with Pop’s notions (definable via finite embedding problems). Our
notion of strong relative projectivity coincides with Haran’s notion of relative
projectivity and with Ershov’s notion of a projective A-group: if G is strongly
projective relative to subgroups G4,...,Gy, then Gy,...,G, are separated, i.e.,
GiNGj; =1 for i # j. This follows from (2): considering the homomorphism
Gix %G xF — Gy X+ x G, x F that identifies the factors it is clear that
for i # j any conjugates of G; and G in Gy - --x G x I intersect trivially. This
also answers the question implicit in [Erl], Remark 1.

2. Tools from valuation theory

In this section we describe valuation theoretic tools used to realize or to recognize
absolute Galois groups as free or projective products of decomposition groups, at
the same time introducing (mostly standard) notation and terminology as well as
collecting other (mostly well-known) facts. [En] and [Ri] are classical references
on valuation theory; the most comprehensive recent book is [K].

2.1 ABSOLUTELY DEFECTLESS FIELDS. For a valued field (F,v) we denote val-
uation ring, maximal ideal, residue field and value group by O,, M,, Fv =
Oy/ M, and T, = v(F*) = F* /0O, respectively. Let D, be a decomposition
subgroup of Gr w.r.t. v, i.e., D, = Gp+ for some henselisation F* of (F,v) in
F#¢?. Denoting ramification and inertia subgroup of D, by R, and I,, we recall
the following

Facts 2.1: (a) R, and I,, are normal subgroups of D, with R, < I, and both
R, and I, have complements in D, ([KPR]).

(b) D,/I, = Gpy.

(¢) R, = 1 if char Fv = 0; otherwise (if char Fv = p > 0), R, is a Sylow-p
subgroup of I,.

(d) The fixed field of R, in F**P is the smallest subextension of F**? /F"” with sep-
arably closed residue field and g-divisible value group for all primes q # char Fv.

Definition 2.2: We call a valued field (F,v) absolutely defectless if R, = 1.

This definition does not depend on the choice of D, since any two decom-
position subgroups of G are conjugate in Gr and this conjugation induces an
isomorphism of the corresponding ramification subgroups. Note also that all fi-
nite separable cxtensions of an absolutely defectless valued field are defectless
(i.e., the fundamental equality *>"e; - f; = n’ holds), but the converse may be
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false (e.g., Qp). Moreover, an absolutely defectless field may well have insepara-
ble extensions with defect. (Using the terminology of [K], chapter I1.12, (F,v) is
absolutely defectless iff the henselisation of (F,v) is ‘separably tame’.)

Recall that an extension (F',v')/(F,v) of valued fields is called immediate if
the canonical embeddings Fv — F'v' and T, — Ty are isomorphisms. An ex-
tension (F',v],...,vL)/(F,v1,...,v,) of n-fold valued fields is called immediate,
if each (F',v})/(F,v;) is immediate.

OBSERVATION 2.3: Let (F’,v'}/(F,v) be an immediate extension of valued fields
with (F',v') henselian and absolutely defectless and with F relatively alge-
braically closed in F'. Then (F,v) is also henselian and absolutely defectless
and res: G — GF is an isomorphism.

Proof: Since F is relatively algebraically closed in F', it is clear that (F,v) is
henselian and res: Gg — Gp is surjective. If Fp denotes the fixed field of the
ramification subgroup R, of Gr in F*¢P, then, since (F',v’)/(F,v) is immediate,
F'Fg is an algebraic extension of (F”, v’} with separably closed residue field and
g-divisible value group for all primes q # char Fv. Since (F’,v') is absolutely
defectless, this implies that F'Fg = F'**? (Fact 2.1(d)), so F'*¢? = F'F*¢? and
res: Gp» — G is injective. Thus, res is an isomorphism and, in particular,
R, = Gpy @ Grir, =1, ie., (F,v) is also absolutely defectless. |

That (F, v) in the observation is henselian and absolutely defectless was already
observed in [K], II., Lemma 12.29 under the weaker assumption that F'v'/Fv be
algebraic (instead of (F',v")/(F, v) being immediate).

Caveat: Note that it may happen that (F’,v’) is henselian and absolutely de-
fectless, but that a relatively algebraically closed subfield (F,v) is not absolutely
defectless.

2.2 INDEPENDENCE. Two valuations v and w on a field F' are called indepen-
dent if they are non-trivial and F' = 0,0y, i.e., as a ring, F is generated by the
proper subrings O, and O,,. An important consequence is the well-known

APPROXIMATION THEOREM: Letwvy,...,v, be (pairwise) independent valuations
on a field F. Then, given any a1,...,a, € F and by,...,b, € F*, there is an
element r € F with v;(z — a;) > v;(b;) forallt=1,...n.

We shall need the following almost trivial
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OBSERVATION 2.4: Two valuations v and w on a field F are independent iff
VyeT,3zx € F:o(z) > vy&w(x) <0.

Proof: If v and w are independent then they are non-trivial. So, given v € T,
there are y, z € F with v(y) > v and w(z) < 0. The approximation theorem now
provides an element z € F with v(z) = v(y) > v and w(z) = w(z2) < 0.

If, conversely, given any y € F, we find an element z € F with v(z) > v(y™?)
and w(z) < 0, we see that y = (yz)z~! € 0,0, and that v and w are non-trivial.
|

COROLLARY 2.5: Let vy,...,v, be independent valuations on F and let
(F' vy,...,v)/{F,v1,...,9,) be an extension of n-fold valued fields where each
Iy, is cofinal in L'y, i.e., Vy € Ty 36 € Ty, with § > v (e.g., if the extension is
immediate or algebraic). Then v}, ..., v, are independent.

For the convenience of the reader, let us reproduce the proof of the following

Fact 2.6 ([He], Theorem 1.1): If F = Fy N ---N F, for henselian algebraic
extensions Fi, ..., F, of a field F' inducing independent valuations vy,...,v, on
F, then each F; is a henselisation of (F,v;).

Proof: Let F(® be a henselisation of (F, v;) in F; and pick any a € F;. Then we
can approximate the irreducible polynomial of o over F w.r.t. v; and, for j # i,
some polynomial of the same degree splitting in distinct linear factors over F'
w.r.t. v; sufficiently well by some f € F[X] to guarantee that all zeros of f lie in
;. Fj and that for some zero S of f (close to o in F;) FW(B) = F®(a) C F;
(Krasner’s Lemma). But then § € ; F; = F and a € F)(a) = FO(B8) = F(O).
Hence F, = F(, ]

2.3 DECOMPOSITION IN FINITE GALOIS EXTENSIONS. Recall the following well-
known details from ramification theory:

Facts 2.7: Let (F,v) be a valued field, let L/F be a finite Galois extension and
let K/F be a subextension of L/F.

(i) K is a decomposition subfield of L/F w.r.t. v iff K = FN H for some henseli-
sation H of (F,v).

(i) If K is a decomposition subfield of L/F w.r.t. v, say D = Gal(L/K)
= {0 € Gal(L/F) | 00, = O} for some prolongation w of v to L, then
w is the only prolongation of w | K to L and v has exactly r :== [K : F] =
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[Gal(L/F) : D] distinct prolongations to L: the ‘conjugates’ woty,...,wo . of
w, where Gal(L/F) =\J;_, :D.

(iii) If E/F is any finite extension with distinct prolongations wy, . .., wy of v to
E, then, given 21 € O,,, ...,z € Oy, , there is some x € E with x — x; € M,,,
for each 1.

LeEMMA 2.8: Given a finite Galois extension Lo/Fy and an embedding
¢: Gal(Lg/Fy) — A into a finite group A, there is a Galois extension
(L,w)/ (F,v) of valued fields with Lw = Ly, Fv = Fy, and Gal(L/F) = A such
that ¢(Gal(Lo/Fy)) is the decomposition subgroup of A w.rt. w.
((L,w)/(F,v) is then tame unramified, i.e., the inertia subgroup of Gal(L/F')
w.r.t. w is trivial.)

Proof: Let L = Fy(Th,...,Ts), where d := A, say A = {1 = ay, as,...,04} with
#(Gal(Lo/Fo)) = {a1,...,az} (so f|d), and where T1,...T, are indeterminates
over Fy.

Let A act on L by acting trivially on Fy, and via ‘left multiplication’ on
{Ty,..., T4}, ie., ax(Ti) = T © ag - a1 = am. Denoting the fixed field un-
der this action of A4 on L by F, it is clear that L/F is a Galois extension with
Gal(L/F) = A

Now choose z € Lg such that {o(z) | ¢ € Gal(Lo/Fp)} is a normal base for
Ly/Fp. Define a ring homomorphism

Q. F()[Tl, .. .,Td] — Ly

. ¢~ Y(as)(x) fori< f
T’H{O fori> f

with mg | Fo = idp, and extend it to a place m: L — Ly U {oo} (Chevalley)
with corresponding valuation w. Then Lw = Ly and Kw = Fv = Fy, where K
is the fixed field of ¢(Gal(Lo/Fp)) in L and v := w | F. Moreover, for ¢ > f,
ai(0y) € O, (e.g., T7! € Oy, but a;(T7') = T; ¢ O,,). Hence ¢(Gal(Lo/Fy))
is the decomposition subgroup of A w.r.t. w. ]

The lemma, of course, implies that any finite group A with any subgroup
D < A can be realized as Galois group of a Galois extension of valued fields,
where D becomes a decomposition subgroup. And it is not difficult to see that
this generalizes to profinite groups. It may, however, be worth noting that this
has no analogue for absolute Galois groups: in general, not any subgroup D of
an absolute Galois group A = G can become a decomposition subgroup of A
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when A is suitably realized as absolute Galois group of some valued field: e.g., if
2 < [A: D] < oo this is not possible.

LemMA 2.9: Let (L,w)/(F,v) be a tame unramified finite Galois extension of
valued fields, where F'v is infinite. Then there is a primitive element z € L = F(x)
over F with irreducible polynomial f € O,[X] over F such that T € Lw is
a primitive element for Lw/Fv and such that f € Fv[X] is the product of
the irreducible polynomials of pairwise non-conjugate primitive elements for the
Galois extension Lw/Fuv over Fu. In particular, f'(z) € Of.

Proof:  Let K be the decomposition subfield of L/F w.r.t. w, let r := [K : F],
let 7y = 1,79,...,7 € Gal(L/F) be representatives for the cosets of Gal(L/K)
in Gal(L/F) and let wy == wo T = w,ws := WO Tg,...,w, := w o 7, be the
distinct prolongations of v to L.

Choose z; € O, such that T1 € Lw is a primitive element for Lw = Fuv(Z71)
over Fv, and choose a1 := 1,a3,...,a, € OF with a; # @; for i # j (this
is possible as Fv is infinite). Then a1Z7,...,a,%1 are non-conjugate primitive
elements for Lw/Fuv.

Now choose z € L with  — 7;(a;z1) € M, for i =1,...,7: use Fact 2.7(iii).
Since 77 (2) = @1Z1,...,7 (z) = G, &, are non-conjugate primitive elements
for Lw/Fv, the conjugates o7, '(z) of x in L over F with ¢ € Gal(L/K) =
Gal(Lw/Fv)andi =1,...,r are all distinct, so L = L(z) (as [L : F] = r-[L : K]).
Moreover, the irreducible polynomial f of z over F is in O,{X], and f decomposes

over F'v into the product of the irreducible polynomials of @;Z1 (i = 1,...,r) over

Fv, which are pairwise coprime, whence f/(z) # 0 € Fu. |

LEMMA 2.10: Let (F,v) be a non-trivially valued field, let L/ F be a finite Galois
extension, let K/F be a subextension of L/F of degree [K : F] = r, and assume
that v has at most r prolongations to L.

Then K is a decomposition subfield of L/F iff there is a polynomial h(X) =
X" 4+ h._1 X"} + -+ hg € F[X] which is irreducible over F, has a root in K
and coefficients with hg, ..., hp_9,1 4+ hp1 € M,.

Proof: ‘<«=’: If h € F[X] has all the properties mentioned, then K = F(z) for
some root x of h in K, and, by Hensel’s Lemma, z is in some henselisation of F
w.r.t. v (v(h(1)) > 0 =+'(h(1))), i.e., K is contained in a decomposition subfield
E of L/F w.r.t. v (Fact 2.7(1)). By Fact 2.7(ii), v has [E : F|] prolongations to
Lysor>[E:F]>[K:F]=rand hence K = E.
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‘=" Let K be a decomposition subfield of L/K, say w.r.t. the prolongation
w of v to L, and let Gal(L/F) = {J,_, 7iGal(L/K) with 7, = 1. Then, by Fact
2.7(ii) and (iii), there is some y € K with y € (14+ M) N[;_y Muwor,: note that
woT; | K#wor;| K for i # j, since w is the only prolongation of w | K to L,
andsow | K #worr " | K.

Now let 2 be a primitive element for the extension K/F(y), so K = F(y, z).
Since v is non-trivial and T, is cofinal in all 'y, we find infinitely many a €
M, C F such that az € (),_; Myor,. As K/F is finite, there are two such a’s,
say a1 # a € F, with F(a12 +y) = F(azz +y), so ¥,z € F(a12 + y), and hence
T = a1z + ¥ is a primitive element for K = F(y, z) = F(x) over F. Moreover,
z € (1 4+ My) NNig Muyor,, 80 Ta(x),...,7r(z) € My, and the irreducible
polynomial of z over F:

mX) = [[(X - (@) € FIX]

i=1

has coeflicients hq,...,h._g € M, and h,_1 € =1+ M,,. n

3. Free products of decomposition groups

The goal of this section is to prove the following proposition and a variation of
it (Proposition 3.7).

ProPOSITION 3.1: Let F be a field with absolutely defectless valuation vy, ..., vp
and assume that for each i, (F,v;) admits an immediate extension (F;, 9;)/(F,v;)
with {F; > §F. Let Dy,...,D, be decomposition subgroups of Gp w.r.t.
V1, ..., Uy respectively.

Then there is an immediate extension (F',vi,...,v})/(F,v1...,v,) with§{F' =
§F such that Gg» = D' - - -xD},, where for each i, D, is a decomposition subgroup
of Gp w.r.t. v} and res: D, — D; is an isomorphism.

Remark 3.2: In the hypothesis of the above proposition, we may even assume
that for each i, (F;,®;) is henselian, is absolutely defectless and contains the
henselisation F; of (F,v;) corresponding to D; = Gg,. Moreover, we may assume
that Gp =< Dq,...,Dy >, 1e, F=FiN---NF,.

Proof of the remark: First pass to a henselisation (!, ) of (Fj, ;). This is an
immediate extension and F! N F*¢P is a henselisation of (F,v;): since (F,v;) is
absolutely defectless, any immediate separably algebraic henselian extension is
a henselisation. So there is an isomorphism 13’{ N F*P — F; over (F,v;) which
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extends to an isomorphism (£, 8}) — (EY',9) over (F,v;). Thus, (B, %)/ (F,v;)
is an immediate henselian extension containing Z;.

Now we pass to the fixed field £/ of a complement of the ramification subgroup
of G o (cf. Fact 2.1(a)) to obtain an absolutely defectless field. (F!",9}")/(F,v;)

is still immediate, since passing from F‘i” to Fi”’ means passing to the perfect
hull for the residue field and passing to the p-divisible hull for the value group
(p = char Fu, cf. Fact 2.1(d)). As (F,v;) is absolutely defectless, Fv & E!' is
already perfect and I',,, = [y p-divisible.

Finally, replacing F' by Fy N ---N F,, doesn’t change any of the hypotheses:
note that the assumption that (Fj, #;)/(F, v;) be an immediate extension of higher
cardinality implies that the valuations vq,...,v, are all non-trivial, so all fields
involved are infinite, and hence all algebraic extensions of the same cardinality.
|

Before proving the proposition let us first isolate the key arguments in three
lemmas.

LEMMA 3.3: Given an n-fold valued field (F,v,...,v,) and decomposition
groups Dy,...,D,, as in Proposition 3.1 and the remark thereafter, there is
an immediate extension (F',vi,...,v.)/(F,v1...,v,) with §F’ = §F such that
v,...,V, are independent, absolutely defectless, and Gp: =< Dj,..., D} >
for decomposition subgroups D; of Gg w.r.t. v, for which res: D} — D; is an
isomorphism (i=1,...,n).

Proof: Let X = X;U---UX,, be a (partitioned) set of indeterminates over F
with §X; = --- = #§X,, = #§F. For each 1, (?‘i,éi)/(F,vi) is immediate and
$E; > #F, so we find an embedding ¢;: F(X) — F; such that 9;{¢;(z)) < 0 for
all z € X; (j # 1) and such that Vy € T, 3z € X; with 0;(¢:(z)) > 7.

After passing to isomorphic copies of (ﬁ’z,ﬁz) over (Fj,v;) (as in the proof of
the previous remark), we may for all: = 1,...,n, € X identify ¢;(z) with z, so
that then X C (), £}, and for each i, 0;(X;) < 0 when j # 4 and 9;(X;) is cofinal
in I's,. Hence, by Observation 2.4, the valuations on F(X) induced by o,..., 0,
are independent.

Passing, if necessary, once more to isomorphic copies of (ﬁ'i, ¥;) over
(Fi(X),9; | F;(X)), we may even assume that the relative algebraic closures
F! of Fi(X) in F; are all contained in a fixed algebraic closure of F(X ). By
Observation 2.3, each F is then henselian and absolutely defectless (w.r.t.
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Now let F/ = F{N---NF}, and, for each ¢, let v} := 9; | F’. Then, by Corollary

2.5, v},...,v!, are independent, and so, by Fact 2.6, each F] is a henselisation of
(F',v;). Hence, by Observation 2.3, res: D; := Gp; — D; is an isomorphism for
each i: F; is relatively algebraically closed in F;, and so in F]. |

LeEMMA 3.4 ([HalJ], Proof of Prop. 14.1, Part C, [P1], Thm. 3.1, and [Erl],
Lemma 1): Let L/K be a finite Galois extension with Galois group B=Gal(L/K)
and let 3: A — B be an epimorphism of finite groups. Consider the elements of
A as indeterminates over L and let A act on L(A) via group multiplication on
A and via the given Galois action of B(A) = B on L. Assume that D < Aisa
subgroup with D Nker = 1.

Then L(A)P := {z € L(A) | oz = z for all 0 € D} is purely transcendental

over LD,
LEMMA 3.5: Let (F,uvi,...,v,) and Dy,...,D, satisfy the assumptions of
Proposition 3.1 and the remark thereafter. Assume, in addition, that either
v1,...,V, are independent or that char Fv; = 0 for all i. Let a: Gp — B,
B: A— Bandp;: a(D;) > A (i=1,...,n) be the data for a reduced locally split
embedding problem for Gg w.r.t. D1,...,D,, ie., A, B are finite groups, a,
are epimorphisms, By, . . ., Bn are homomorphisms with A =< im fgy,...,im B, >
and, for each i, B o ; = idy(p,)

Then (F, vy, .. .,v,) admits an immediate extension (F', vy, ..., v}) with {F’ =
§F, where each (F',v]) is absolutely defectless and where G+ has decomposition
subgroups Dj,...,D, w.rt. vi,...,v, respectively such that Gp =
< Di,...D) >, res: D] —» D; is an isomorphism for each i and such that
the lifted locally split embedding problem for Gp» w.r.t. DY,...,D;, (ie., o =
aores: Gpr —» B, 8 = B A —» B, Bl := Biores: o(D;) — A) has a
locally exact solution (i.e., 3¥': Gp» - A withy' | D} = Bj oo’ | Dj).

Proof: Let L = (F*°P)ke @ he the fixed field of ker @ in F*°?, so L/F is a Galois
extension with Gal(L/F) = B and (identifying those two groups) we may assume
that o = res: Ggp — Gal(L/F) = B. Then, for each i, L) = F.n L.

Consider the field L{A) with the A-action from the previous lemma. Then
L(A)/L(A)* is a Galois extension with Galois group A and, for each i, the con-
clusion of the lemma (with D = im f3;) says that the extension L(A)™#: /L*(D:)
is purely transcendental.

Since LD C Fy and §F; > #F = $L*P) we can consider L(A)'™# as
subfield of F;.



Vol. 127, 2002 RELATIVELY PROJECTIVE GROUPS 111

As before, passing, if necessary, to isomorphic copies of F, over F;L(A)i™#:,
we may even assume that all relative algebraic closures F! of F;L(A)"F in F;
are contained in a fixed algebraic closure of L(A). Then, by Observation 2.3,
each F] is henselian and absolutely defectless w.r.t. 9; | F}, res: D; := Gp: = D;
is an isomorphism, and (F/ := F{N---NF},v},...,v},) with v} :== 9, | F' is an
immediate extension of (F,vy,...,v,) with G =< D{,..., D), > and §F’ = {F.
!

Moreover, each F] is a henselisation of (F”,v]

) (so the D) are decomposition

groups): if vy, ..., v, are independent, then so are, by Corollary 2.5, v1,...,v;,
and hence, by Fact 2.6, F] must be a henselisation of (F’, v}); and if char Fv; =0
for all 4, then as immediate henselian algebraic extension, F is, again, a henseli-
sation of (F},v}).

Now 7/ := res: Gg — Gal(L(A)/L(A)#) = A is a homomorphism with
' | D; = res: D > Gal(L(A)/(F{ 0 L(4)) = im f;,
s0
B toy | Di=d | D} =res: D} - Gal(L/(F;N L)) = o{D;) < B.

Hence, 7’ is a locally exact solution of the lifted locally split embedding problem.
|

Proof of Proposition 3.1: The proof of the proposition is now a standard chain
construction. We may assume from the start that (F, vy ...,v,) etc. satisfies the
conditions in the remark following the proposition. By Lemma 3.3, we may also
assume that vq,...,v, are independent (this is not necessary if char Fy; = 0 for
all 7).

We first find an immediate absolutely defectless extension

(FY 1, .. 02/ (Fv1,...,v0)

with §#! = §F and with decomposition subgroups Di,...,D} of Gp w.r.t.
v},..., v} respectively such that Gp: =< Dji,..., D} >, such that res: D} — D;
is an isomorphism for each i, and such that each locally split embedding problem
for Gp w.a.t. Dy,...,D, has a locally exact solution when lifted to Gp1 w.r.t.
D}, ...,DL.

This is achieved by an ordinal enumeration of these embedding problems
(EP,),<x and constructing an (ordinal) chain of absolutely defectless immediate
extensions (Fi, vy 1, .. Ven)/(F,v1...,0,) with §F,, = §F, with decomposition
subgroups D, ; and isomorphisms res: D, ; — D; (i = 1,...,n) such that all
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EP, for p < & have a solution when lifted to G, . For successor ordinals this
is done by Lemma 3.5, and for limit ordinals by taking unions of the fields con-
structed ‘before’ (§F, never increases since there are only §F-many locally split
embedding problems for Gr). Note that for 4 < v < &, solutions for EP, lift
from G, to GF,. Then (F,v},...,v}) := (Fx,uan1-..,vx ) has all the required
properties.

Now we iterate this process and construct F2, F3 ... (with valuations, de-
composition groups, same cardinality etc.) solving all locally split embedding
problems for Gpi in Gpi+: and let F' = |J;2, F* (with v},... etc.). Then
{F' = §F, G =< Dj,...,D!/, > and each locally split embedding problem
for Gp+ w.r.t. Dy, ..., D! has a locally exact solution. Hence, by Proposition
1.2, Gpr = D x---x DJ,. |

As a consequence, we shall now prove a variant of Proposition 3.1, dropping
details about immediacy and absolute defect both from hypothesis and conclu-
sion, but retaining the Galois theoretic data. The reduction of Proposition 3.7
to Proposition 3.1 proceeds via the following

LEMMA 3.6: Given a field K, there is an absolutely defectless henselian valued
field (L,w) with §L = max{$K,Ro} admitting an immediate extension (L, %)
with HE > BL such that K C O,,, Lw is the perfect hull of K, Iy, is divisible,
and, hence, res: Gy, — Gk is an isomorphism.

Proof: Choose an infinite set X of indeterminates over K with X =
max{} K, Ro} and fix some well-ordering ‘<’ on X. Let L = K(X) and let w be the
(X, <)-adic’ valuation on L: For any finite subset {r; < z3 < --- < z,} C X,
the restriction of w to K(z1,...,Z,) is (equivalent to) the composed valuation
Wgy B+ - B w,, , where wy, is the z;-adic valuation on the rational function field
K(Zig1,y..-,2Tn)(2:) in z; over K(Tiy1,...,%y). To make this consistent, define

Ly = @Z"Ym

zeX

where ‘@D’ is the lexicographic sum w.r.t. the (well-Jordering induced by < on
X under the bijection (z = 7;)zex, define w(z) := «, for all z € X and define
w to be trivial on K. This uniquely determines a valuation w on L with residue
field K and value group I'y,.

Now the field of formal Laurent series in X over K

L:=K((X)):={a= Z ayt" | ay € K & supp(c) is well-ordered}
Y€l
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(where supp(a) := {y € T'y, | ay # 0}) with the canonical henselian valuation

w(a) := min{y | ay # 0} foralla= Z a,t? € L
1€l
is an immediate extension of (L, w). (Henselianity of w is proved, e.g., in [PrC]
I1.5 Satz 4 and II1.2 Satz 17.) Moreover, #L > 4L, since any subset Y C X is
well-ordered and, thus, gives an element

ay = Zx: Zt” el,
€Y T€EY
where ay # ay: for Y # Y’ C X. So §L > §{Y C X} > $X = L.

Finally, replace (ﬁ, ) by the fixed field of the complement of the inertia sub-
group of G;, and replace (L,w) by its relative algebraic closure in the new
(absolutely defectless henselian) field (L, ). Then, by Observation 2.3, (L, w)
is absolutely defectless and henselian, (L,%)/(L,w) is still immediate, now with
divisible value group and the perfect hull of K as residue field. Since K C O,
there is a commutative diagram

Gp ——> Gry

resl la‘res

GK s GK
and so res: G — Gk is an isomorphism as well. 1

It may be worth noting that it was only by the special choice of T',, that
K ((Tw)) > K + §T,. If T'y, = R, for example, K ((R)) = §K + R, since
well-ordered subsets of R are countable.

We conclude this section by a variant of Proposition 3.1:

ProprosITION 3.7: Let (F,v1,...,v,) be an n-fold valued field and let Dy, ...,
D,, be decomposition subgroups of G w.r.t. vy, ..., v, respectively. Then there
is an extension (F',v},...,v)/(F,v1,...,v,) with §F' = max{§iF, g} such that
Gpr = D} x---x D), where for each i, D} is a decomposition subgroup of G
w.r.t. v}, and res: D; — D; is an isomorphism.

Remark 3.8: The extension of n-fold valued fields established in the proposition
is, in general, no longer immediate, but (as the proof will show) there is a divisible
ordered abelian group I' such that, for each %,

Fvg =T Blex p_ooru,-a
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where p = char F' (not necessarily char Fv;!) and p~*°T',, denotes the p-divisible
hull of Ty, (:=T,, if p = 0), and F'v] = Fv; or the perfect hull of Fuv;, again
depending on whether or not char F' = 0.

Proof: Let (L, w) be the field constructed in the previous lemma from K = F,
and let w; = --- = w,, = w. By Proposition 3.1, there is an immediate extension
(L' wh, ..., w)/(Lywy,...,w,) with L/ = {L = max{§F,Ro} such that G =
D,y %+ - x Dy, , where for each ¢, D, is a decomposition subgroup of G+ w.r.t.
w;, and p; := res: Dy — Dy, = G = GF is an isomorphism.

Now consider, for each i, the composed valuation w} @ v;, i.e., the refinement
of w; by the unique prolongation of (again denoted by) v; from F to the perfect
hull L'w} & Lw; = Lw of F. Let D} := p;(D;), let F! be the fixed field of D}
and let ' =F{n---NnF,.

Then F] is a henselisation of (L', w} @ v;), hence of the intermediate field F’
w.r.t. the induced prolongation v; of w; ®v; from L’ to F', and res: D; := Gpr —
D, is an isomorphism. Clearly, §F” = max{#F,Ng}. And since the subgroup of a
free product of profinite groups Gy *- - -xGy, generated by subgroups H; < G; (i =
1,...,n) is the free product of these subgroups: < Hy,...,H, >= Hy % xH,,
we also have Gpr = D] x---x D}, 1

4. Proof of Theorem 1

1. It clearly suffices to prove Theorem 1 for n = 2. So we are given two fields F,
F, and we want to find a field F with Gr = Gg, * GF,, where char F' = char Fi,
provided char Fy = char F5.

2. Tt is well-known that the absolute Galois group of a field K of characteristic
p > 0 can be realized as absolute Galois group of a field L of characteristic 0:
just make K the residue field of a valuation of mixed characteristic (extend the
p-adic valuation on Q canonically to a valuation on the purely transcendental
extension Q(X) of Q with residue field F,,(X), where X is a transcendence base
of K over Fp, and adjoin roots of minimal polynomials of all elements of K over
F,(X) lifted to Q(X)), pass to the henselisation L’ of L and then to the fixed
field of a complement of the inertia subgroup of G (use Fact 2.1(a)). Hence we
may assume that char F} = char F;.

3. Since, for any subgroups H; < G; and H; < G of profinite groups G,
G5, the subgroup generated by H; and H, (under the canonical embeddings of
G1, G2) in G1 x Gy is Hy x Hs, and since subgroups of absolute Galois groups
are absolute Galois groups, it suffices to realize G (x) * Gr(v) as absolute Galois
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group of a field of the characteristic of k, where k = Q or F}, is the prime subfield
of F; and F,, and where X and Y are transcendence bases of F; and F; over k
which we may assume algebraically independent.

4. Now choose valuations v; and v2 on F = k(X UY) with Fy; = k(X) and
Fuy = k(Y) and apply Proposition 3.7 to obtain a field with absolute Galois
group Dy * Do, where D; is a decomposition subgroup of Gg w.r.t. v; (i =1,2).
Passing to complements of the inertia subgroups of Dy, Dy we obtain, once more
applying the argument in 3., a field with absolute Galois group Gy(x) * G(y)-
]

By the same arguments as in Step 3 and 4, it is clear that the proof of Theorem
1 can be reduced to realizing Gy(x) * G(x) as absolute Galois group having
the same characteristic as the prime field &k, where X is in an infinite set of
indeterminates over k. But we do not know whether G (x) = Gy(x) * Gr(x)-

Theorem 1 has an almost trivial generalisation to ‘pro-C Galois groups’ Let C
be an almost full family of finite groups, i.e., C is closed under homomorphic
images, subgroups and direct products. A pro-C group is then an inverse limit
of groups in C and the free pro-C product Gy x¢ --- x¢ G,, of pro-C groups
G1,-.., Gy 18 a pro-C group G admitting embeddings €;: G; — G such that
given any homomorphisms v;: G; — H into a pro-C group H there is a unique
homomorphism v: G — H with v; = voe¢; (1 = 1,...,n). The pro-C Galois
group Gg(C) of F is the maximal pro-C quotient of G, i.e., the Galois group
of the compositum of all finite Galois extensions of F' with Galois group in C.

COROLLARY 4.1: Given any fields Fi, ..., F,, there is a field F' with Gg(C) =
G, (C)*¢- - %¢GF, (C). Moreover, F can be chosen to have the same characteristic
as all F;, provided they have the same characteristic.

Proof: This is, because the maximal pro-C quotient of the free product is the
free pro-C product of the maximal pro-C quotients. ]

5. Regularly closed fields

5.1 REALIZING FREE PRODUCTS OVER REGULARLY CLOSED FIELDS.

PropPoOsSITION 5.1: Let (F,v1,...,v,) be an n-fold valued field with correspond-
ing henselisations F1, ..., F,.
Then there is an extension (F', v}, ..., v})/(F,v1,...,vn) of n-fold valued fields

such that F' is regularly closed w.r.t. vy, ..., v,,, the v are independent and, for
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each i, there is a henselisation F] containing F; where res: Gp: — Gp, is an
2
isomorphism and Gp: 2 G Ry koK Gr:.

Proof: In the proof of Proposition 3.7 we already constructed an extension
(F',v4,...,v)/(F,v1,...,v,) of n-fold valued fields and, for each %, a henseli-
sation F} of (F',v}) containing F; such that res: G F— GF, is an isomorphism
and Gpr & G F; %+ - % Gp:. Moreover, by the way how Proposition 3.1 was used
in the proof of Proposition 3.7, v{, ..., v}, were independent and, for each 7, there
was an immediate embedding F} — F; of absolutely defectless henselian valued
fields where uﬁ’i > §F/, and, again, res: G 7, — G was an isomorphism.

It now suffices to find a regularly closed extension (F”,v7,...,v) of
(F',vq,...,v}) with F = F{'n-.-N F} where each (F",v)) embeds (as
valued field) into F; and where F)' is the henselisation of (F",v}') correspond-
ing to the relative algebraic closure of the embedding of F” in F;. For then
res: Gpill — G is an isomorphism for each i, and so res: Gp+ — G is an
isomorphism as well: surjectivity is clear since G+ is generated by the G F;- And
since G & Gpix - %Gy thereisa (unique) homomorphism res™1: Gg — Gpn

induced by the local inverses res; L Gr = G P with res o res™!

=idg,, . As
G pn is generated by the G Pt res™! is surjective and hence res is injective.

To find (F”,vy,...,v)) one proceeds exactly as in the proof of [HP), Theorem
3.1. By [HP], Theorem 1.8, it suffices to satisfy the local-global principle for
rational points on affine plane curves. So using a standard chain argument (as
in the proof of Proposition 3.1}, the crucial step is to find, given an absolutely
irreducible polynomial f(X,Y) € F'[X, Y] with a simple zero (a;,b;) in each F},
a regular n-fold valued field extension of (F',v{,...,v}) of the cardinality of F’
which embeds in each F; (as valued field w.r.t. the corresponding prolongation
of v}) and which has a zero of f.

To achieve this, it obviously suffices to embed the function field F'(z,y) (where
(z,y) is a generic point of the curve) into each F;. But this is easy since §£; > §F;:
the point (a;,b;) is simple, say

df

a‘f(ai,bi) #0;

choose ¢ € F; \ F} with ¥;(¢) big enough to guarantee that
dj
z?,(f(a, + €, bz)) > 20; (%(ai + €, b,)),

then a} := a; + € € F; is transcendental over F’ and, since F; is henselian, there
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is some b € F; with f(al,b,) = 0; the embedding of F'(z, y) over F' into F} is

[ 2]

now given by mapping (z,y) — (a},b.). |

[ 20 1

The following Corollary states one direction of Theorem 2’ (the other direc-
tion is Theorem 2). Both Proposition 5.1 and Corollary 5.2 easily follow from
[Pol], Theorem 3.4 (where the hypothesis should be ‘strong projectivity’, not
just ‘projectivity’) and Theorem 2.6.

COROLLARY 5.2: Let G be a profinite group which is strongly projective relative
to subgroups G1,...,Gy, and assume that each G; is isomorphic to an absolute
Galois group. Then there is a regularly closed n-fold valued field (F,vy,...,v,)
with vy,...,v, independent and there is an isomorphism ¢: G — G such that
for each i, $(G;) is a decomposition subgroup of Gg w.r.t. v;.

Proof:  'We will first construct an n-fold valued field (F,vy,...,v,) satisfying
all stated properties except being regularly closed. To this end let G, be a
free profinite group with rkGn11 = 7kG. Then G,11 is an absolute Galois
group as well and we find, as in the proof of Theorem 1, an (n + 1)-fold valued
field (K,ws,...,wny1) with Gg =2 Gy x -+ x Gpy1, where the free factors G;
are decomposition subgroups of Gx w.r.t. w;, where the w; are independent
and where each (K, w;) allows immediate extensions of higher cardinality. Let
m: Gg — G be an epimorphism identifying the free factors Gy,..., G, with the
correpsonding subgroups of G and projecting G,41 onto G. As G is strongly
projective relative to G1, ... Gy, there is a splitting ¢: G — Gk of = with #(G;)
conjugate to the factor G; in G (fori =1,...,n). Now let (F,vy,...,v,) be the
fixed field of ¢(G) where each v; is induced from the henselisation F; of (K, w;)
with GF,- = ¢(Gz)

Here we continue as in the previous proof. Given a curve C over F with F;-
rational points we find immediate prolongations of vy, ..., v, to the function field
L = F(z,y) of C with henselisations L, containing F; such that res: G, — Gp,
is an isomorphism for each i. By strong projectivity, again, the epimorphsim
res: G, — Gp has a splitting ¢: Gp — Gr. Let (F',vl,...,v]) be the fixed
field of ¢(Gr) with v] induced from henselisations F; with Gr' = ¢(GF,). Then
res: Gpr — Gp and res: Gpr — Gp, (¢ =1,...,n) are isomorphisms and C has
an F'-rational point.

Finally, again, a chain of such extensions leads to the desired regularly closed
field. ]
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5.2 THE ABSOLUTE (GALOIS GROUP OF REGULARLY CLOSED FIELDS.

5.2.1 Solvability of embedding problems is existential. Let us recall that a (finite)
embedding problem for a profinite group G is given by a pair of epimorphisms
a: G —» B, 8 A - B (where A and B are finite groups). A solution resp. a
proper solution of the embedding problem is a homomorphism resp. an epi-
morphism v: G — A such that o = S o1.

OBSERVATION 5.3: Solvability of a finite embedding problem for the absolute
Galois group G of a field F can be expressed by an existential (first-order)
formula in the language of fields with parameters from F.

Let a: Ggp — B, 3: A — B be the data of a finite embedding problem for Gg.
Let E := Fiz ker a be the fixed field of the kernel of « and let ¢: Gal(E/F) — B
be the unique isomorphism making the diagram

Grp =—=—=GFp
/El .
Gal(E/F) -~ B
commute. We first prove the following
CrAM: The above embedding problem has a proper solution iff there is a Galois
extension L/F containing E and an isomorphism ¢ : Gal(L/F) — A such that
the following diagram commutes:
Gal(L/F) —2> 4
,l o
Gal(E/F) %> B

To prove the claim, assume first that the embedding problem has a proper solu-
tiony: Gp — A. Then the field L := Fiz ker «y is a Galois extension of F' contain-
ing E (since kery C ker @) and there is a unique isomorphism ¢: Gal(L/F) — A
making the top square of the following diagram commute:

GF:GF

Testep/Ll 17
¢

Gal(L/F) —2> A
TESL/E B

Ga(E/F) —Y > B
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Since o = fo~y and respser/p = T€SL/E O T€SFser /L, the outer square commutes
as well and, hence, so does the bottom square.

For the converse, assume there is a Galois extension L/F' containing E and an
isomorphism ¢: Gal(L/F) — A making the bottom square of the diagram above
commute. We define y := ¢ o respses,,, so that the top square commutes. Then
v: Gg — A is an epimorphism and

a=1tporespserp =Poresy porespeers, = (Bod)o (¢~ 0n) =fHor.
The claim is proved.

Our next step is to express the existence of a Galois extension L/F' as described
in the claim by an ‘almost existential’ formula in the language of fields {+, x, 0,1}
(allowing parameters from F'). We first express that there is a Galois extension
L/F with Gal(L/F) = A. This is equivalent to the existence of an irreducible
(monic) polynomial f € F[X] of degree d := §A such that the F-algebra F[X]/(f)
contains d distinct zeros zy,...,z4 of f where, for each k, the map z; — zj
induces the permutation o of {z1,...,z4} corresponding to the permutation of
A={a1 =1,asz,...,aq} given by left multiplication with ax: then L = F(z1) =

- = F(z,) is a Galois extension with Gal{L/F) = A. The elements of the
F-algebra F[X]/(f) can be regarded as d-tuples of elements of F

To +7‘1X+"'+’I‘d_1Xd_1/(f) (T, .+ s Td—1)s

addition is componentwise and multiplication is expressible via polynomials in
the coeflicients (only depending on the coefficients of f). Therefore, the existence
of a Galois extension L/F with Gal(L/F) = A is equivalent to the formula

d .
Jde,xy,..., 20,8 € F*: ®(c,z1,...,24,u),

where

d
q)(C,ZEl,.,Id, /\f(‘Tk =0Au- H k_xl)_l
k=1 k#L
A /\ Tio+T11%k + 0+ Tid- 1:1:‘,: e = Tm
klmaag-a=an,

A f. is irreducible.

Here z; = (z10,...,%14-1) and, for ¢ = (cg,...,cq-1) € F?, ‘f. denotes the
polynomial fo(X) = X%+ c4_1 X% 14 .- +¢y. Of course, addition and multipli-
cation on F'¢ occurring in the formula are induced from the F-algebra F[X]/(f.)
and 1= (1,0,...,0) € Fe.
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To express all properties of L/F required by the claim, let £ = F({) and
let g € F[X] be the irrducible polynomial of ¢ over F, say degg = e, and let
(1=, (..., be the conjugates of  over F. Then the existence of a Galois
extension L/F containing F and of an isomorphism ¢: Gal(L/F) — A with
Bo¢=1poresy g is equivalent to the formula

d .,
e, Ty, Ty Uy 21 -5 26 € FO i B(e, 21, .. g, u) AV(C, T1, ..., Ty 21y« - -4 Ze)s

where

e
U, T1y. .oy Ldy 21y -y 2e) = /\g(zj) =0A /\ 2 # zjr
i=1 i
A /\ Zj',0 + Zj 1 &5 + -t Zj',d—lx'f;l =%
5,303~ (Bay ) (€50 )=¢;

Again, addition and multiplication on F? occurring in the formula are inherited
from F[X]/(f.), and zj: = (2510, ., 2" .d—1)-

The formula which expresses proper solvability of our embedding problem is
existential except for the phrase ‘f. is irreducible’ in the formula ®. It may
now come as a minor surprise that the most naive way of making the formula
existential — delete ‘f. is irreducible’ — works, provided F is infinite. Yet for
finite fields F, Gr & Z is projective, and so every embedding problem has a
solution (and any formula true in F is equivalent to that truth). Hence, from
now on, F' is assumed to be infinite.

So let us first assume that the new formula holds for F, say with ¢, z4,...,
Tq,U, 21, .. .2 € F? witnessing this. Then A may be considered as a group of
F-algebra automorphisms of the d-dimensional F-algebra

L' = F[X]/(fe) = F(z1) = --- = F(za).
For each irreducible factor f of f. over F, the canonical F-algebra epimorphism
m: L' — L := F[X]/(f)

maps the d distinct zeros zy,...,z4 of f, in L' to d distinct zeros of f, in the
field L:

7 (u) - H(W(.’L‘k) —7(zy)) = m(u- H(:L‘k —z))=7(1)=1.

k#l k#l

Hence, f. is a separable polynomial and

L=F(n(z1) == F(n(zaq))
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is a Galois extension of F: the splitting field of f. over F. (So all irreducible
factors of f. over F' generate the same field extension L/F.) Moreover, £ C L,
since g(w(z1)) = m(g(z1)) = 0. It is also easily checked that

G:={a€c A| alkerr) Ckernr}={a€ A| f(r(a(X +(fc)))) =0} < A4

and that
m*: G — Gal(L/F)
Oq: L — L
X+(f) = maX+(f))

is a well-defined isomorphism: note that A acts simply transitive on the zeros of f,.
in L', that G acts simply transitive on the zeros of f. in L’ which become zeros of
fin L, and so 7*(G) acts simply transitive on the zeros of f in L. So ¢ := (n*)~1
embeds Gal(L/F) into A, and the formula ¥ implies that 3o ¢ = 9 oresy/p.

For the converse, assume L/F is a Galois extension containing F with an
embedding ¢: Gal(L/F) — A such that fo¢ = yoresy,;r. Now use Lemmas 2.8
and 2.9 to find a tame unramified Galois extension (M, w)/(K,v) of valued fields
with Gal(M/K) = A, Mw = L, Kv = F and a primitive element z € M = K(z)
over K with irreducible polynomial f € O,[X] over K such that f'(z) € O%.
Then the polynomial f, := f € F[X] is separable and the action of A on the zeros
of f in M induces an action of A on the zeros of f. in the F-algebra F[X]/(f.)
fulfilling our formula:

a—

If wy, ..., w, are the distinct prolongations of v to M, then all zeros of f are in
Oy, N+ --NOy, , and A permutes the d distinct zeros of f in each O,,. Thus A acts
simply transitive on the corresponding (tuples of) zeros of f in the O,-algebra
Oy, X -+ x Oy, and, via the canonical ring epimorphism

Ouu x...x(’)wr—»Mwlx-"XergF[X]/(fC)’

on the corresponding zeros zi,...,z4 of f. in F[X]/(f.). In particular,
[iw(ze — 1) is a unit in FX]/({.) since

H (an(z) —a(z)) € OF N---NO5 . 1
apF#a €A

The idea to consider ‘Galois-algebra extensions’ rather than just field extensions
when dealing with embedding problems for absolute Galois groups already occurs
in Hasse’s 1948 paper [Hs], section 1.
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PROPOSITION 5.4: Let (F,v1,...,v,) be an n-fold valued field with henselisa-
tions Fy,...,F, C F*P. Then ‘locally conjugate solvability’ of a finite locally
split embedding problem for Gr w.r.t. Gp,,...,GF, can be expressed by an ex-

istential formula in the language of n-fold valued fields with parameters from
F.

Proof: Let a: Gp — B, 3: A - B, B;: a(Gr,) = A (i =1,...,n) be the data
of a finite locally split embedding problem for Gr w.r.t. Gg,,...,GF,, le, A, B
are finite groups, «, B are epimorphisms, and the f§; are homomorphisms with
BoBi=idaGy,)-

As in the proof of Observation 5.3, we let £ = Fizker @ be the fixed field of
the kernel of o, we let ¢: Gal(E/F) — B be the unique isomorphism making the
diagram

Gp =—=Gpt

T‘estep/El la

Gal(E/F) Y—> B
commute and first prove the following
CLAIM: The above embedding problem has a proper locally conjugate solution iff

there is a Galois extension L/ F containing E and an isomorphism ¢: Gal(L/F) —
A such that the diagram

Gal(L/F) *— 4

resL/El iﬁ

Ga(E/F)Y—>B

commutes and ¢~ 1(im B3;) is a decomposition subgroup of Gal(L/F) w.r.t. v; for
each i.

‘=": Since a proper locally conjugate solution « of a locally split embedding
problem is, in particular, a proper solution of the embedding problem given by
a, 3, we can construct L and ¢ as in the proof of Observation 5.3. So we only have
to check that, for each i, ¢~!(im f3;) is a decomposition subgroup of Gal(L/F)
w.r.t. v;. But this follows since

¢ Y(Y(GE,)) = respser 1 (Gr,) = Gal(L/L N F;)

is a decomposition subgroup of Gal(L/F) w.r.t. v; and is conjugate to ¢~ (sm 3;)
in Gal(L/F).
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‘<. For the converse, the claim in the proof of Observation 5.3 already pro-
vides an epimorphism v: Ggp — A with &« = S o~. Then, for each ¢, both
¢~ (im B;) and ¢~ (v(GF,)) = Gal(L/L N F;) are decomposition subgroups of
Gal(L/F) w.r.t. v;. Hence, they are conjugate in Gal(L/F) and so im ; and
v(GF,) are conjugate in A, i.e., 7 is a locally conjugate solution and the claim is
proved.

Since any solution ¥ of an embedding problem is a proper solution of the
modified embedding problem where A is replaced by ¢m +, the claim provides also
a criterion for locally conjugate solvability of the given locally split embedding
problem: it is the criterion of the claim except that ¢ is only required to be an
embedding such that, for each i, there is some a; € A with {im ;)% C im ¢ and
with the property that ¢=1((ém 3;)%) is a decomposition subgroup of Gal{L/F)
w.r.t. v;.

Our next step, again as in the proof of Observation 5.3, is to express proper
locally conjugate solvability by an ‘almost existential’ formula in the language of
n-fold valued fields, and we may take the formula

d .
e, 1,y e ey By Uy 21,y 26 € FC 1 Q(e, 2y, .., Tg, W) AY(C, T, . o, Tdy 21, - -y Ze)

from the proof of Observation 5.3 to express existence of a Galois extension L/F'
containing F and an isomorphism ¢: Gal(L/F) — A such that o ores; ;g =
Bo@$. So we only have to express that, for each i, $~1(im ;) is a decomposition
subgroup of Gal(L/F) w.r.t. v;.

To achieve this for one 4, let K be the fixed field of $~*(im ;) in L. Then KNE
is the fixed field of ¥~} (a(GF,)) in E, i.e., KN E = F; N E is a decomposition
subfield of E/F. Hence v has exactly [K N E : F] prolongations to E (Fact 2.7
(ii)), and thus at most r := [L : E]-[K N E : F] prolongations to L. Since
Bi: a{GF,) — A is injective, [L: K] = tfim 3; = fa(Gr,) = [F : KN E], and so

[L:KNE)|

r=lL Bl KB = gy

(K NE:F]

_[L:K]-[K:KNE] R
= FiKOE [KNE:F)=[K:F).

Lemma 2.10 now says that K is a decomposition subfield of L/F (i.e., that
¢~1(im B;) is a decomposition subgroup of Gal(L/F)) w.r.t. v; iff there is a
polynomial A{X) = X" + ¢,_; X""t + .-+ t5 € F[X] such that h is irreducible
over F', has a root in K and satisfies £g,..., 42,14+ t,_1 € M,,.

Under the identification L = F[X]/(f.) = F? used in the formula already
imported from the proof of Observation 5.3, this is expressed, for each 7, by the
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existential formula

Jy; € F43h,w; € F6;(c, z1, - - -, Ta, Yi, hi, i),

where
ei(c7x1a"'7zdayi7h‘i7wi) - A ak(y‘i) =Y
k:arp€im B;
A T (er(w) — ai(ws)) € F™
k#£IES;

Ay + R gy R =0
Ahig,-- s hip—a, 1+ hir 1 € My,
A gi(wip + wiyi + -+ Wir—1yli ) =0

AV ety )ig<a) #0,
p.q€{1,....d}¢

where ax(y;) = Yo + vizx + -0 + yi,d_lxz_l, where S; C {1,...,d} such
that the ay with k € S; form a system of coset representatives of A/im ;, where
r; = §A/#im fB;, and where g; is the irreducible polynomial of a primitive element
of F;NE over F. Note that the first two lines of ©; express that F(y;) is the fixed
field of ¢~ 1(im f3;) and that hence the polynomial X™ +h; ., 1 X" 4+ hig
is the irreducible polynomial of y; over F. Moreover, formulas of the type t € O
and t € M, are existential in the language of valued fields:

teOf = teEO,AH €0, :t-t' =1,
tEMy <=t €O, AN EO, -t =1.

The existential formula expressing locally conjugate solvability of our locally split
embedding problem is now

e, T1y e By Uy Y1y e e vy Yny 210 -+ o> 26 € FOIhy, wy € F™ .. 3hy, wy, € F™ :

n
' (c, 21, ., Ta, u) A V(¢ 1, .y By 21, -y Ze) A /\ Bi(c, z1, .., Ta, Yi, hiy i),
i=1
where @' is the formula ® except that the phrase ‘f. is irreducible’ is deleted.
Note that we may assume F to be infinite, since otherwise all valuations are
trivial and hence any locally split embedding problem trivially solvable.
If the existential formula holds, then we obtain a solution of our locally split
embedding problem, as in the proof of Observation 5.3, by considering the F-
algebra L' := F[X]/(f.), an irreducible factor f of f. over F, and the F-algebra



Vol. 127, 2002 RELATIVELY PROJECTIVE GROUPS 125

epimorphism m: L' —» L := F[X]/(f) onto the Galois extension L/F with

Gal(L/F) i) A < Autp L', where S o ¢ = tpores; g. We have to check that,
for each 7, im ¢ contains a conjugate of im §; in A, and that the corresponding
subgroup of Gal(L/F) is a decomposition subgroup of Gal(L/F).

So let us focus on one 7, and observe that the polynomial h; € F[X] of degree r;
has r; distinct roots in L’: the elements ax(y;) with k € S; and that the condition
in the second line of ©; is carried over to L by w. Hence, h; has r; distinct zeros
in L. Tt is easily checked that exactly one irreducible factor h of h; over F is
of the shape X" +t,_1 X"~ + - + tg with to,...,t,_2,1+ t,_1 € M,,. So we
may assume (after replacing y; by a suitable ag(y;) — this is fixed by a subgroup
conjugate to im 3; in A, namely (im §;)%) that h(w(y;)) = 0.

Then K := F(n(y;)) contains a zero of g; (i.e., a decomposition subfield of
E/F w.r.t. v;), and is itself (by Hensel’s lemma applied to h) contained in some
henselisation (F,v;). Hence K N E is a decomposition subfield of E w.r.t. v;.
Moreover, the last line of ©; means that L' = F(z1,y;), so

L=n(L) =n(F(z21)n(F(y:)) = EK.

Thus, res: Gal(L/K) — Gal(E/EN K) is an isomorphism and K is a decompo-
sition subfield of L/F. Finally, ¢(Gal(L/K)) < im f;, as Gal(L/K) fixes m(y;),
and since

§Gal(L/K) = Gal(E/E N K) = §a(Gr,) = fim §;

equality holds.

Conversely, assume that L/F is a Galois extension containing F, that
¢: Gal(L/K) — A is an embedding with o ¢ = ¢ ores;, g and that, for each i,
there is some a; € A such that (im 8;)* C im ¢ and such that ¢—1((im 3;)%) is
a decomposition subgroup of Gal(L/F) w.r.t. v;. Once again quoting from the
proof of Observation 5.3, we find a tame unramified Galois extension
(M, w)/(K,v) of valued fields with Gal(M/K) 2 A, Mw 2 L, Kv 2 F and a
primitive element © € M = K (z) over K with irreducible polynomial f € O,[X]
over K such that f'(z) € Oy and such that the action of A on the distinct ze-
ros of the polynomial f, := f € F[X] in the F-algebra F[X]/(f.) satisfies the
formulas ®' and .

So only ©; remains to be checked for each i. To this end, choose y € L such
that F(y) is the fixed field of (im 8;)* in L and the irreducible polynomial of y
over F is of the form X" +t,_1 X" ' +... 4+ to with tg,...,tr_g,14+t,_1 € M.,
(Lemma 2.10). Let wy,...,ws be the distinct prolongations of v to M, choose
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distinct ag, . ..,as € M,, ~{0}, and, by Fact 2.1(iii), choose g; € M with
Ui € (y + My, ) N (a2y + May,) N -+ N (asy + My,).

Then K(y;) is the fixed field of (#m B;)* in M and the irreducible polynomial
hi € K [X] of §; over K has coeflicients in O,, and the induced polynomial h; := = h;

over F has coeflicients h;o,...,hir;—2,1 + hir,_1 € M,,. Moreover, h; has r;
distinct zeros in L (which gives the second line of ©;). And, finally, L' = F(z1,y;)
since M = K (21, ;), where 1 € O, is a lifting of z; in M. |

As an application of independent interest let us mention the following
Corollary, which might be helpful for the question whether the inverse Galois
problem for Q is decidable: note that there is still a chance that the existential
theory of Q be decidable.

COROLLARY 5.5: Let F' be a number field and let F, ..., F, be henselisations
w.r.t. n distinct primes on F. Then locally conjugate solvability of a locally split
embedding problem for G w.r.t. Gg,,...,GF, is a diophantine property, i.e.,
equivalent to an existential first-order formula in the language of fields.

Proof: This is just a combination of our Proposition 5.4 with Rumely’s existen-
tial definability of valuation rings in number fields ([Ru], Theorem 1). ]

Another immediate consequence is the following

COROLLARY 5.6: Let (F,v1,...,v,) and (F',v],...,v)) be n-fold valued fields
which are elementarily equivalent in the language of n-fold valued fields. Then
Gr is the free product of suitable decomposition subgroups (w.r.t. vq,...,vy) iff
the same is true for Gp:.

Proof: This is immediate from the claim in the proof of the above proposition
together with Proposition 1.3. 1

5.2.2 Proof of Theorem 2. In order to prove Theorem 2 we will use the following
model theoretic characterisation of regularly closed fields:

FACT 5.7: An n-fold valued field (F,vy, ..., v,) with pairwise independent valu-
ations and with corresponding henselisations Fy,. .., F, is regularly closed w.r.t.
V1, .., Uy if (Fyv1,...,v,) Is existentially closed (in the language of n-fold valued
fields) in any regular extension (F',vi,...,v],) provided each F; is existentially
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closed in some (any) henselisation F} of (F’,v.) containing F; (in the language
of valued fields).

Proof: This is Theorem 1.9 together with Theorem 4.1 of [HP]: note that the
general assumption made in [HP] that F should be of characteristic 0 does not
enter the proof of those two Theorems. |

Proof of Theorem 2: Let (F,v1,...,vu,) be a regularly closed n-fold valued
field where wv1,...,v, are pairwise independent, and let Fi,...,F, be corre-
sponding henselisations. In order to show that G is relatively projective w.r.t.
Gp,,...,GF,, we have to show, by Proposition 1.4, that any finite locally split
embedding problem for Gr w.r.t. Gg,,...,GF, has a locally conjugate solution.

Solet a: Gp - B, : A » B, B;: (Gr,) - A (i = 1,...,n) be the data of
such a finite locally split embedding problem. Using the above fact together with
Proposition 5.4, it suffices to find an extension (F’,vy,...,v,)/(F,v1,-..,0,)
and, for each i, a henselisation F} of (F',v}) containing F;, such that F'/F is
regular, F; is existentially closed in F (in the language of valued fields) and such
that the locally split embedding problem (lifted via res: Gg» — Gp to Gp:) has
a locally conjugate solution.

To achieve this, we have to adjust the proof of Lemma 3.5 to our situation.
Let, for each ¢, F} > F; be an elementary extension (of valued fields) such that
BF7 > §F;. Let L be the fixed field of kera in F*%P_ and, after the canonical
identification, Gal(L/F) = B, a = res: Gp — Gal(L/F) = B and L*Cr) =
LN Fl

Consider the field L' := L(A) with the A-action of Lemma 3.4, and let F’ :=
L(A)* be the fixed field under this action. Then L'/F’ is a Galois extension
with Galois group A, F'/F is regular, and, for each i, L'*™# /L N F; is purely
transcendental, so we may consider L'*™5i as subfield of F}* and denote the
induced valuation on F’ by v]. Now let F] be the relative algebraic closure of F’
in Fj* and observe that then F; C F}, that F; is existentially closed in F (because
it is in F}) and that L' N F = L™ A Therefore, res: G+ — A = Gal(L'/F")
gives rise to a solution of our lifted locally split embedding problem, which, in
particular, is a locally conjugate solution. |
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