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ABSTRACT 

By two weILknown results~ one of Ax, one of Lubotzky and van den Dries, 

a profinite group is projective iff it is isomorphic to the absolute Galois 

group of a pseudo-algebraically closed field. This paper gives an analo- 

gous characterization of relatively projective profinite groups as absolute 

Ga|ois groups of regularly closed fields. 
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I n t r o d u c t i o n  

The  a b s o l u t e  G a l o i s  g r o u p  GF of a field F is the  Galois  group of a separable  

closure F sep of F over F ,  considered as profini te  group. 

The  free  p r o d u c t  G1 *" " * Gn of profini te  groups G 1 , . . . ,  Gn is a profini te  

group G allowing embeddings  ei : Gi -+ G (i = 1 . . . .  , n) such tha t ,  given any 

homomorph i sms  7i : Gi -+ H (i = 1 , . . . ,  n) into a profini te  group H,  there  is a 

unique h o m o m o r p h i s m  7 : G -+ H with  7i = 7 o ~i for each i. 

This  pape r  has two ta rge ts :  one is to  give a s implif ied proof  of the  fact t h a t  the  

free p roduc t  of f ini tely many  absolu te  Galois  groups is again  an absolu te  Galois  

group,  and  the o ther  is to descr ibe  the  absolu te  Galois  group of mu l t ip ly  valued 

fields sa t is fying a local-global  pr inciple  for ra t iona l  poin ts  on varieties.  

THEOREM 1: Given fields F1 , . . . ,  Fn, there  is a field F of  characteristic 0 with 

GF TM GEl * " "  * GFn. Moreover, i f  char F1 . . . . .  char  Fn = p > 0, F can also 

be chosen to have characteristic p. 

We call  a profini te  group G p r o j e c t i v e  [ s t r o n g l y  p r o j e c t i v e ]  r e l a t i v e  t o  

s u b g r o u p s  G 1 , . . . ,  G~ o f  G if each ep imorph i sm 7r: H - ~  G of profini te  groups 

which spl i ts  local ly  (i.e., Vi3pi: Gi -+ H with  ~ o Pi = ida,) spl i ts  g lobal ly  (i.e., 

3p: G --+ H wi th  7 top  = ido [and for each i, p(G~) is conjugate  to p~(Gi) in HI) .  

If  G is projec t ive  relat ive to subgroups  G t , . . . , G , ~ ,  then  G embeds  into 

G1 * . . .  * G~ * F ,  where F is some free profini te  group (Propos i t ion  1.4(5)). 

Since any free profini te  group occurs as absolute  Galois  group of some field of any 

prescr ibed  character is t ic ,  and since subgroups  of absolu te  Galois  groups are 

absolute  Galois  groups,  Theo rem 1 immed ia t e ly  generalizes to  

THEOREM 1': Let G be a profinite group which is projective relative to subgroups 

G 1 , . . . ,  Gn and assume tha t  each Gi  is an absolute Galois group. Then G is an 
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absolute Galois group of some field of characteristic O. Moreover, i f  aI1 Gi can be 

realized over fields of the same fixed positive characteristic, then so can G. 

Theorem 1, which answers Problem 18 from [J], should be attr ibuted to Florian 

Pop, though he never states it: Theorem 1 is a simple consequence of Theorem 

3.4 in [Pol], which even allows one to generalize Theorem 1 to certain infinite 

free products of absolute Galois groups. The theorem was first stated and proved 

quite differently, in [M] in the case where the Gi are of countable rank. Then 

(without the 'Moreover'), Ershov was the first to publish a proof ([Er2], Theorem 

3), which is more in the spirit of Pop's proof. 

In all approaches, the technique for realizing free products of given absolute Ga- 

lois groups is valuation theoretic: find a field F where each of the given absolute 

Galois groups occurs as decomposition subgroup of GF w.r.t, some valuation on 

F,  and make sure that these valuations are 'in sufficiently general position' to en- 

sure that the decomposition subgroups freely generate a subgroup of GF. In [M], 

this is achieved by 'probabilistic' methods: if these valuations live on a countable 

Hilbertian field, then, with probability 1, random conjugates of the decompo- 

sition subgroups generate a free product ([Ge], Theorem 4.1). This method, 

however, only works for Galois groups which are isomorphic to subgroups of ab- 

solute Galois groups of countable Hilbertian fields, i.e., for countably generated 

absolute Galois groups. In [Pol] and [Er2], the valuations were put in sufficiently 

general position by constructing a field which is also regularly closed (see below) 

w.r.t, finitely many valuations having the prescribed decomposition groups. 

Many of the arguments in our proof can be found in [Pol] and [Er2], but our 

proof becomes easier for three reasons: one is that it seems unnecessary to con- 

struct a multiply valued field which is regularly closed, the second is that we 

work with a very handy criterion for profinite groups to be the free product of 

given subgroups in terms of solving 'locally split embedding problems' (Proposi- 

tion 1.2), and, thirdly, we restrict ourselves to fields with a finite (rather than a 

boolean) family of valuations and thus avoid all the machinery needed to handle 

the more general situation. 

Due to our notion of relative projectivity, the passage from 

Theorem 1 to Theorem 1' is rather smooth. That  our notion coincides with 

Pop's, where only locally split epimorphisms with finite kernel are required to 

split globally, follows from a non-trivial relative analogue (Proposition 1.4) to 

Gruenberg's characterization of projective groups ([Gr], Proposition 1). The key 

idea is to replace the somewhat unprofinite use of Zorn's Lemma in Gruenberg's 

proof by a profinite argument. 
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Our second target is to improve another result of Pop and Ershov on the 

absolute Galois group of regularly closed fields. Let us recall that  an n-fold valued 

field (F, v l , . . . ,  vn) (with corresponding henselisations F1 , . . . ,  Fn) is r egu la r ly  

closed (or pseudo-closed)  if it satisfies a local-global  pr inc ip le  for rational 

points on varieties, i.e., if every absolutely irreducible (affine) F-variety with a 

simple F~-rational point for each i has an F-rational point. We shall prove 

THEOREM 2: Let (F, v l , . . . , v~)  be a regularly closed n-fold valued field, let 

F1, . . . ,Fn be henselisations of F w.r.t, v l , . . . , vn  resp., and assume that 

v l , . . .  ,vn are independent. Then GF is strongly projective relative to 

GEl,...,GEm. 

Using the variant of Theorem 1 ~ which - -  as Theorem 3.4 in [P1] - -  realizes 

strongly relative projective groups over regularly closed fields (Corollary 5.2), 

Theorem 2 can immediately be strengthened to the following relative analogue of 

the Ax Lubotzky/van den Dries characterization of projective profinite groups 

as absolute Galois groups of PAC-fields ([A], p. 269, and [LvD], 4.8): 

THEOREM 2t: Let G be a profinite group with subgroups G1, . . . ,  Gn where each 

Gi is isomorphic to some absolute Galois group. Then G is strongly projective 

relative to G1, . . . ,  G,~ iff G is isomorphic to the absolute Galois group of a reg- 

ularly closed n-fold valued field (F, v l , . . . ,  v~), where v l , . . . ,  v~ are independent 

and where, for each i, the isomorphism G ~- GF maps Gi onto a decomposition 

subgroup of GF w.r.t, vi. 

Under the hypothesis of our Theorem 2, [Pol], Theorem 3.3 resp. [Po2], 

Theorem 3.2, comes to the weaker conclusion that  GF is projective relative 

to GF1,...,GEm, and only under additional hypotheses (e.g., that the Gi be 
isomorphic to absolute Galois groups of real or p-adically closed fields) strong 

projectivity has been proved ([Poll, Theorem 1.2). Ershov shows Theorem 2 

([Erl], Thm. 3) for what he calls 'RC*-fields', which are special regularly closed 

fields, but not all regularly closed fields are RC*-fields. Both Pop's and Ershov's 

results, however, deal with certain infinite families of valuations, not just finite 

ones. We will extend our Theorem 2 to this setting later. 

What made our progress on Pop's and Ershov's achievements possible, is the 

observation that  solvability of finite embedding problems for absolute Galois 

groups is an existential first-order property in the language of fields (Obser- 

vation 5.3), and that the same holds for the corresponding 'relative embedding 

problems' in the language of n-fold valued fields (Proposition 5.4). This is based 

on a careful analysis of decomposition subfields of finite Galois extensions which 
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goes beyond usual ramification theory (Lemmas 2.8 2.10) and which may be of 

independent interest for those working on the inverse Galois problem. For ex- 

ample, it turns out that  solvability of (relative) embedding problems over Q is a 

diophantine property (Corollary 5.5). 

ACKNOWLEDGEMENT: This paper was initiated by an invitation of Moshe 

Jarden to the Tel Aviv University in February/March 2000. I am very grate- 

ful to him and to Dan Haran for stimulating discussions on Theorem 1 of the 

present paper. 

1. Locally split embedding problems 

Let us extract from [Poll, assertion 1.1, and from Ershov's analysis of 'projec- 

tive A*-groups'  what seem to be the 'correct '  notions for dealing with [strongly] 

relatively projective profinite groups: 

Definition 1.1: Let G be a profinite group and let G 1 , . . . ,  Gn be subgroups of G. 

Then a loca l ly  sp l i t  e m b e d d i n g  p r o b l e m  for G w.r.t. G 1 , . . . ,  G,~ is given by a 

pair of epimorphisms a: G -~ B, fi: A -~ B, where A and B are profinite groups, 

and by homomorphisms ~i: a(Gi) --~ A with ~ o ~i = id~(G~) (i = 1 , . . . , n ) .  

The embedding problem is called f ini te ,  if A is finite. I t  is called r e d u c e d ,  if 

A ~-< i m f l l , . . . , i m ~ , ~  >. 

A s o l u t i o n  of such a locally split embedding problem is a homomorphism 

~/: G -~ A with a -- ~ o 7. If 7 is surjective, it is called a p r o p e r  solution. A 

solution ~/is called loca l ly  e x a c t  if 7 [ Gi --- ~i o ~ ] Gi for each i -- 1 , . . . ,  n. 

And a solution ~ is called a loca l ly  c o n j u g a t e  solution if ~(Gi) is conjugate to 

i m ~ i  in A for each i -- 1 , . . . , n .  

1.1 CHARACTERIZING FREE PRODUCTS VIA LOCALLY SPLIT EMBEDDING PROB- 

LEMS. Recall that  a profinite group G is the f ree  p r o d u c t  G = G1 * "  • * Gn 

of the subgroups G 1 , . . . , G n  < G, if any given homomorphisms 7i: Gi -~ H 

(i = 1 , . . . , n )  into a profinite group H uniquely extend to a homomorphism 

"y: G --+ H (i.e., 7 I Gi = 7i for each i). Therefore, every finite locally split 

embedding problem for G = G1 * . . .  * G~ w.r.t., G 1 , . . . ,  G~ has a locally exact 

solution: take H = A and 7i = ~i o ~ I Gi. We now prove the converse: 

PROPOSITION 1.2: Let G =< G 1 , . . . , G n  > be a profinite group generated by 

subgroups G 1 , . . . , G n  ~ G and assume that every finite reduced locally split 

embedding problem for G w.r.t. G 1 , . . . ,  Gn has a locally exact solution. Then 

G = G I  * " ' * G , ~ .  
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Proo~ Let G ~ , . . . ,  Gin be pairwise disjoint isomorphic copies of G1, . . . ,  Gn re- 

spectively, fix isomorphisms p~: G~ --+ G~ (i = 1 , . . . ,  n), let G'  := G ~ * . . . * G ~  and 

let p: G'  --+ G be the (unique) homomorphism with p I G~ = p~-~ for i = 1 , . . . ,  n. 

We first prove the following 

CLAIM: Given any epimorphism a: G --~ B onto a finite group B and given 

isomorphisms ¢i: a(Gi) --+ B~ (i = 1 , . . . ,  n), where the B~ are pairwise disjoint, 

there is a unique epimorphism ¢: G ~ B'  := B~I * . . . ,  Bin such that for each i, 

¢ I G i = ¢ i ° ° l l G i .  

To see this, let ¢: B'  --~ B be the unique homomorphism with ¢ I B~ = ¢~-1. 

Then for any open normal subgroup N <1 B'  with N _< ker ¢ we obtain a locally 

split reduced embedding problem given by a: G --~ B,/~: A --~ B and ~i: a(Gi) -+ 

A, where A := AN := B ' / N  with canonical projection Irg: B '  --~ A and where 

~i := 7rN o ¢i (i = 1 , . . . , n ) .  

By assumption, any such embedding problem has a locally exact solution, so 

there is some 7 = 7N: G --, A with 7 I Gi =/~i o ~ I Gi (i = 1 , . . . ,  n). Since B' is 

the inverse limit of these AN, and since the corresponding 7N are unique (G = 

< G 1 , . . . ,  Gn >) and compatible, the inverse limit ¢ = lime_ ~/N: G ~ B'  exists 

and, for each i, ¢ I G i  = l im~ ~i o a I G i  = ¢ i  o Ol I G i .  As G = <  G 1 , . . . ,  G n  >,  

is also onto and unique, and the claim is proved. 

Now associate to any open normal subgroup M <1 G the canonical projection 

~M: G ~ BM := G / M  and the projection a~4: G'  --~ B ~  := B'M,1 * " . . ,  B~,n  

induced by the canonical projections G~ --~ B'  M , i  :~--- G~/pi(GiNM) (i = 1, . . . ,  n). 

Then, for each i, there is a (unique) isomorphism CM,i: O~M(Gi)  --+ BI such M,i 
- 1  that  a ~  I G~ = CM# o aM o Pi " The claim thus gives a unique epimorphism 

CM: G ~ B ~  with CM I Gi = CM# o aM [ Gi = a~M o p~. 

Since G = lim~_ aM(G),  we have Gi = l im~ aM(G~), so 

! ! 
and G'  = l im~ aM(Gi) = liin~_ ( ~ ( G ' ) .  By the uniqueness of the ¢M we thus 

obtain an inverse system of commutative diagrams 

p 
G' > G 

B'M > BM 
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/ 
with @M I Gi : a M 0 Pi. Thus, the inverse limit '¢ :=  l im~ ~ M :  G --> G ~ exists 

and ¢ I Gi = l im~ a ~  o Pi = Pi for each i. Therefore, p o ¢ = ida  and p is an 

isomorphism. | 

For the realization of free products  of absolute Galois groups as absolute Galois 

groups (Theorem 1), the free-product criterion of Proposi t ion 1.2 is good  enough. 

In some situations, however, we require a criterion which is easier to check. 

PROPOSITION 1.3: Let  G = <  G~ . . . . .  G~ > be a profini te  group generated by 

subgroups G1, . . . , Gn <_ G. Then G = GI *. . .*G~ i f f  every  finite reduced locally 

spli t  embedding  problem for G w.r.t .  G1, . . . , G,~ has a proper  locally conjugate  

solution. 

Proof: For the non-trivial direction of the proof  it suffices, by Proposi t ion 1.2, 

tha t  any finite locally split embedding problem for G w.r.t. G 1 , . . . , G n  has a 

locally exact solution. So let A, B be finite groups, a:  G --~ B, fl: A --~ B 

epimorphisms and /?i: a(Gi )  --~ A homomorphisms with /3 o fli = id~(ad (i = 

1 , . . . ,  n). We have to find a homomorphism ~/: G ~ A with 3' I Gi = ~ o a I Gi. 

Since B = <  a ( G 1 ) , . . . ,  a (Gn)  >, we may assume tha t  our embedding problem 

is reduced. 

Let A1 , . . . ,A ,~  be pairwise disjoint isomorphic copies of i m [ 3 1 , . . . , i m / ~ n  

respectively, fix isomorphisms 7ri: im/~i -~ Ai ,  let A ~ = A ~ ,  --- * An and let 

It: A ~ ~ A be the epimorphism with ~r I Ai = 7r~ -1 (i = 1 , . . . ,  n). Then for any 

open normal subgroup N<I A ~ with N < ker 7r we can canonically lift our given lo- 

cally split embedding problem from A to A N  :=  A ' / N  by sett ing a N  = a: G --~ B ,  

f in = fi °TrN: AN  ~ B and/tN,i  = "ffNO'Triofli: a(Gi )  -+ AN (i = 1 . . . .  , n ) ,  where 

rcN: A N  --~ A and 7ON: A ~ ~ A N  are the canonical projections (so 7c = 71" N O 71-N): 

Note that  

A~ ~N> A N  

i < 

G 

N ~ I a 
> A  ~ B  

[~NO/~N,i : [~oTrN  oTrNOTriO/~i [~OTCOTriO[~i = / ~ o [ i i  =id,~(G~), 

since 7r o 7r.i Iim/3~ = id~,~, f~, and that  

< i'm,/~N,1 . . . . .  im/~N,n > - - <  7rN(A1), . . .  ,Trg(An) > :  AN.  
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By assumpt ion,  each of these reduced lifted locally split embedding problems 

has a proper  locally conjugate solution, i.e., there is an ep imorphism 3'N: G -~ 

AN with a N  = fin o "TN such tha t  "~/N(Gi) is conjugate  to imfiv,~ = 7rjv(Ai) 
for each i. Moreover,  there are only finitely m a n y  locally conjugate  solutions 

9'N, because "/N is uniquely de termined by the images 7N(Gi)  (i = 1 , . . . , n ) :  

3'N/Gi) = a-~l(imfg,i)a~ for some ai E AN and fN,i o f N  l im fN , i  = idim~N.,, 

SO for g E Gi 

ai'71v (g)a~ 1 = (fN,i o fiN)(a(TN (g)a7 1) = fN,i (fin (ai)aN (g) fN (ai)-  1). 

Writ ing A I = lim~_ AN with N ranging over all open normal  subgroups  of A I 

with N < ker 7r, and wri t ing f l  := /3  o 7r, one therefore obtains  an ep imorph i sm 

.yl: G --~ A I with a = / 3  / o-ff such that ,  for each i, ~ff(Gi) is conjugate  to Ai in A/. 

Moreover,  for each i, ker71NGi  = ker a n G i ,  since/31 is injective on Ai and hence 

on the conjugate  71(Gi) of Ai, and kerc~ n Gi = ker(Tr o f i  o a )  n Gi. Therefore,  

there is an i somorphism Pi: Ai --+ ~'(G~) with "y' I Gi = (p~ o 7ri o f~ o a )  I G~ 

(i = 1 , . . . , n ) .  

Now let p: A I ~ A I be the endomorph i sm of A I with p [ Ai = Pi. Surject ivi ty 

then  passes from .yi to p, and, since A I is finitely generated (hence small),  this 

implies t ha t  p is an isomorphism.  

Thus  p-1  o ~ff: G --+ A I is a h o m o m o r p h i s m  with p-1 o yl [ Gi = 7ri o fli o ~ I Gi 

(i = 1 , . . . ,  n),  and so the induced h o m o m o r p h i s m  "y = ~r o p -1  o 71: G -+ A is the 

desired locally exact  solution of our locally split embedding problem: for each i, 

"r l a~ = f~ o a l a~. . 

1.2 CHARACTERIZING RELATIVELY PROJECTIVE GROUPS. 

PROPOSITION 1.4: Let G be a profinite group with subgroups G1, . . . , Gn. Then 

the following are equivalent: 

(1) G is [strongly] projective relative to G1 . . . .  , Gn. 

(2) Every embedding problem a: G --~ B, f :  A --~ B with a 'local' solution 

7i: Gi --~ A O.e., a I -- fov ) for each i has a 'global'solution 7: G -+ A 

(i.e., a = f o 7) [and 7(Gi) is conjugate to 7i(Gi) in A for each i]. 

(3) Every locally split embedding problem for G w.r.t. G 1 , . . . ,  G,~ has a [locally 

conjugate] solution. 

(4) Every finite locally split embedding problem for G w.r.t. G1 , . . . ,  Gn has a 

[locally conjugate] solution. 

Moreover, any of these conditions implies [is equivalent to] 
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(5) There is a free profinite group F with rk  F <_ rk  G such tha t  there is an 

embedding p: G ¢-+ Gt * . . "  * Gn * F [and, for each i, p(Gi) is conjugate to 

the factor Gi in G1 * . . .  * G~ * F]. 

P r o o f  (1) ~ (2): Assume (1) and let a:  G -~ B,/3:  A -~ B define an embedding 

problem for G with local solutions Vi: Gi -+ A [such tha t  7(Gi) is conjugate to 

7i(Gi)] for each i. Consider the fibre product  A XB G :-- {(a, g) 6 A x G I/3(a) -- 

c~(g)} with the canonical projections irA: A ×B G - -  A and ira: A XB G --~ G onto 

the corresponding coordinate,  so ~ o ~ra = / 3  o 7rA. Then  7re has local splittings 

Pi: e i  -+ A x B G 

for each i, and hence, by (1), a global splitting p: G -+ A XB G [with p(Gi) 

conjugate to p~(Gi) in A XB G, say p(Gi) = (pi(Gi))(a~'g~)]. Now 7 :=  7rA o p 

is the solution we look for: ~ -- c~ o ~rG o p = /3 o 7rA o p = /3 o "y [and 7(Gi) = 

7rA(p(Gi)) = ~A((pi(Gi))  (a''g')) ---- ~/i(Gi) a~ for each i]. 

(2) ~ (3): Jus t  observe tha t  any local spli t t ing/3i:  c~(Gi) -+ A for a locally 

split embedding problem ~: G -~ B, /3: A - -  B provides a local solution "Yi = 

/3i o ~ I G i .  
(3) =~ (1): Any epimorphism ~r: H --~ G with local splittings Pi: Gi --+ H 

defines a locally split embedding problem ~ = idG, /3 = ~ and/3i  = Pi- 

(3) ~ (4): Clear. 

(4) ~ (1): Assume (4) and let 7r: H - -  G be an epimorphism with local 

splittings Pi: Gi --~ H (i = 1 , . . . ,  n). 

We first proceed as the proof  of [Gr], Proposi t ion 1, and consider the case 

where ker ~r is finite. For each i, ker 7r N im Pi = I since ~ o pi = idG~. As ker r is 

finite, there is an open normal  subgroup N <1 H with ker 7r n N i m  pi = 1 for all 

i = 1 , . . .  ,n.  Hence N k e r  ~r n N i m p i  = N and so the induced finite embedding 

problem O~N: G ~ G/~r(N),  (/3N =)  7rN: H / N  ~ G / ~ ( N )  where ol N is the 

canonical project ion and 7rg(hN) = 7~(h)Tc(N) for h 6 H,  is locally split: 

ker 7rN A N i m p i / N  = ( N k e r  7r A N i m p i ) / N  = N / N  = 1. 

Thus, there is a solution 7N: G --+ H / N  with 7rN o 7N = aN.  

Now consider the fibre product  

H / N  x v / ~ ( N ) G  :=  {(AN, g) 6 H / N  x G I 7ON(AN) = (~N(g)} 

and observe that  
~: H --+ H / N  XG/,(N) G 

h ~ (AN, ~r(h)) 
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is an embedding,  since ker 7r A N = 1. Now 

p': G --~ H / N  xG/~(N) G 

is well-defined (7rg(yN(g)) = aN(g)) and imp'  C_ ime: for g C a let "YN(g) = 

hN  for some h E H and observe tha t  h can be chosen with 7r(h) = g because 

7r(h) • 7r(N) = g" 7r(N). Hence p := c -1 o p' is a spli t t ing for 7r. 

[Moreover, if 3'N is a locally conjugate solution, say 

~/N(ai) = (Nim pi /N)  h~N 

for some hi E H ,  then  p'(ai) = (e(Nimpi))  h~g and so p(Gi) is conjugate  to 

im pi in H.] 

Further ,  let us observe tha t  each [locally conjugate] spli t t ing p of 7r can be 

considered as inverse limit of [1.c.] split t ings PN of Try, where N runs through 

all open normal  subgroups  of H with  ker ~r ~ N i m  p = 1 (again, such N ' s  exist 

because k e r r  is finite and k e r r  N p(G) = 1). Converseley, any such inverse limit 

of [1.c.] compat ib le  spli t t ings of 71" N gives a spli t t ing of lr. Since each 7rg has only 

finitely m a n y  splitt ings, the set of [1.c.] spli t t ings of 7r is an inverse limit of finite 

sets, and hence compact .  

Now let ker 7r be a rb i t ra ry  and consider the family K of normal  subgroups 

K <1 H which are open subgroups of ker 7r. Then  for each K E K, 7r induces 

a project ion 7rK: H / K  --~ G which splits locally and has a finite kernel, so the 

set RK of [locally conjugate] spli t t ings of ~rK is non-empty  and compact .  Now 

the RK (K E K) fbrm an inverse sys tem of non-empty  compac t  sets. Hence the 

inverse limit is non-empty,  and any element in it defines a [locally conjugate] 

spl i t t ing of ~r. 

(1) ~ (5): Assuming (1), we can choose a free profinite group F of rk F = rk G 

with an ep imorphism u0: F --~ G extending to an ep imorphism 7r: G1 * ' "  * G n  * 

F --+ G which maps  each free factor Gi identically onto the subgroup Gi of G. 

By (1), ~r splits globally [in a locally conjugate way] and any such spli t t ing gives 

the desired embedding.  

[5] ~ [1]: Assume [5]. Then,  by the subgroup theorem of Ha ran  ([Ha], 

Theorem 5.1), p(G) is s t rongly project ive relative to p ( G 1 ) , . . . , p ( G , . ) ,  since 

G1 * • -- * Gn * F is s t rongly project ive relative to G I , . . . ,  Gn. (Compare  the 

following remark) .  II 
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Remark 1.5: As the proposition shows, our notions of relative [strong] projectiv- 

ity coincide with Pop's  notions (definable via finite embedding problems). Our 

notion of strong relative projectivity coincides with Haran's  notion of relative 

projectivity and with Ershov's notion of a projective A-group: if G is strongly 

projective relative to subgroups G 1 , . . . ,  G~ then G 1 , . . . ,  Gn are separated, i.e., 

Gi N Gj = 1 for i ¢ j .  This follows from (2): considering the homomorphism 

G1 *" • • * Gn * F --+ G1 x .- • x Gn x F that  identifes the factors it is clear that  

for i ¢ j any conjugates of Gi and Gj in G1 * " - * G ~  * F  intersect trivially, This 

also answers the question implicit in [Erl], Remark 1. 

2. Tools  f r o m  v a l u a t i o n  t h e o r y  

In this section we describe valuation theoretic tools used to realize or to recognize 

absolute Galois groups as free or projective products of decomposition groups, at 

the same time introducing (mostly standard) notation and terminology as well as 

collecting other (mostly well-known) facts. [En] and [Ri] are classical references 

on valuation theory; the most comprehensive recent book is [K]. 

2.1 ABSOLUTELY DEFECTLESS FIELDS. For a valued field (F, v) we denote val- 

uation ring, maximal ideal, residue field and value group by Or, A4~, Fv  := 
r ~  N N O~/Ad~ and F~ = v (F  x) = F / O ~ ,  respectively. Let D~ be a decomposition 

subgroup of GF w.r.t, v, i.e., Dv = GF,, for some henselisation F ~ of (F, v) in 

F *~p. Denoting ramification and inertia subgroup of D~ by R~ and I,,, we recall 

the following 

FACTS 2.1: (a) R.v and I~ are normal subgroups of D~ with R~ <_ Iv, and both 

R~ and Iv have complements in D~ ([KPR]). 

(b) D.~/I~ ~ GF,,. 

(c) Rv -=- 1 i f  charFv = O; otherwise Of charFv  = p > 0), Rv is a Sylow-p 

subgroup of Iv. 

(d) The fixed field of  R~ in F sep is the smallest subextension of  F ~ P / F "  with sep- 

arably dosed residue field and q-divisible value group for all primes q ¢; char Fv.  

Definition 2.2: We call a valued field (F, v) a b s o l u t e l y  de fec t l e s s  if R.~, = 1. 

This definition does not depend on the choice of Dr,  since any two deconl- 

position subgroups of GF are conjugate in GF and this conjugation induces an 

isomorphism of the corresponding ramification subgroups. Note also that  all fi- 

nite separable extensions of an absolutely defectless valued field are defectless 

(i.e., the fundamental equality '~-~ e i " fi = n'  holds), but tile converse may be 
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false (e.g., Qp). Moreover, an absolutely defectless field may well have insepara- 
ble extensions with defect. (Using the terminology of [K], chapter II.12, (F, v) is 

absolutely defectless iff the henselisation of (F, v) is 'separably tame'.) 

Recall that an extension (F', v ') /(F,  v) of valued fields is called i m m e d i a t e  if 

the canonical embeddings Fv ~ F~v ~ and Fv ~-+ F., are isomorphisms. An ex- 

tension (F', v~ , . . . ,  v~)/(F, v l , . . . ,  vn) of n-fold valued fields is called immediate, 

if each (F' ,  v~)/(F, vi) is immediate. 

OBSERVATION 2.3: Let (F', v ') /(F, v) be an immediate extension of valued fields 

with (F',  v') henselian and absolutely defectless and with F relatively alge- 

braically closed in F I. Then (F, v) is also henselian and absolutely defectless 

and res: GF, -+ GF is an isomorphism. 

Proof: Since F is relatively algebraically closed in F ' ,  it is clear that  (F, v) is 

henselian and res: GF, -+ GF is surjective. If FR denotes the fixed field of the 
ramification subgroup R.  of GF in F s~p, then, since (F',  v') /(F,  v) is immediate, 

F'FR is an algebraic extension of (F',  v') with separably closed residue field and 

q-divisible value group for all primes q ¢ char Fv. Since (F',  v') is absolutely 

defectless, this implies that  F'FR = F 's~p (Fact 2.1(d)), so F '~v = F ' F  ~p and 

res: GF, -+ GF is injective. Thus, res is an isomorphism and, in particular, 

R ,  -- GFR ~- GF'Vn = 1, i.e., (F, v) is also absolutely defectless. II 

That (F, v) in the observation is henselian and absolutely defectless was already 
observed in [K], II., Lemma 12.29 under the weaker assumption that F ' v ' / F v  be 

algebraic (instead of (F', v ') /(F,  v) being immediate). 

Caveat: Note that it may happen that (F',  v') is henselian and absolutely de- 

fectless, but that a relatively algebraically closed subfield (F, v) is not absolutely 

defectless. 

2.2 INDEPENDENCE. Two valuations v and w on a field F are called indepen-  

den t  if they are non-trivial and F = (9vO~, i.e., as a ring, F is generated by the 

proper subrings (gv and (_9~. An important consequence is the well-known 

APPROXIMATION THEOREM: Let Vl, . . . ,  vn be (pairwise) independent valuations 

on a field F. Then, given any a l , . . . , a n  E F and b l , . . . , bn  E F ×, there is an 

element x E F with vi(x - as) > vi(b~) for all i = 1, . . .  n. 

We shall need the following almost trivial 
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OBSERVATION 2.4: Two valuations v and w on a field F are independent  iff  

V7 • F~3x • F: v (x )  > V & w(x )  < O. 

Proof: I f  v and w are independent  then they  are non-tr ivial .  So, given ~/E Fv, 

there are y, z e F with v(y)  > "~ and w(z)  < 0. The  approx imat ion  theorem now 

provides an element x • F with v(x)  = v(y)  > ~/and w(x )  = w(z )  < O. 

If, conversely, given any y • F ,  we find an element x • F wi th  v(x )  > v(y -1)  

and w(x )  < 0, we see tha t  y = ( y x ) x  -1 • 0 ~ 0 ~ ,  and tha t  v and w are non-trivial .  

I 

COROLLARY 2.5: Let  v l , . . . , v ,  be independent  valuations on F and let 

( F ' ,  v~ , . . . , v~ ) / ( F, V l , . . . ,  vn ) be an extension o f  n-fold valued fields where each 

Fv~ is cofinal in Fv~, i.e., V~' ¢ Fv{ 35 ¢ F~, with 5 >_ ~, (e.g., i f  the extension is 
I immedia te  or algebraic). Then v ~ , . . . ,  v~ are independent .  

For the convenience of the reader,  let us reproduce the proof  of the following 

FACT 2.6 ([He], Theo rem 1.1): I f  F = F1 M . . .  N F~ for henselian algebraic 

extensions F 1 , . . . ,  F~ o f  a field F inducing independent  valuations v l , . . . ,  v~ on 

F,  then each F~ is a henselisation of  (F, v~). 

P r o o f  Let F (i) be a henselisation of (F, vi) in Fi and pick any a C Fi. Then  we 

can app rox ima te  the  irreducible polynomia l  of a over F w.r.t,  vi and, for j ¢ i, 

some polynomia l  of the same degree spl i t t ing in dist inct  linear factors over F 

w.r.t ,  vj sufficiently well by some f E F[X]  to guarantee  tha t  all zeros of f lie in 

N j # i  Fj  and tha t  for some zero fl of f (close to a in Fi) F( i ) (~)  = F ( i ) ( a )  C_ Fi 

(Krasner ' s  Lemma) .  But  then/~  C Aj  Fj = F and a C F (~) (a)  = F (i) (fl) = F (i). 

Hence F~ = F (i). I 

2.3 DECOMPOSITION IN FINITE GALOIS EXTENSIONS. Recall the following well- 

known details f rom ramificat ion theory:  

FACTS 2.7: Let  (F, v) be a valued field, let L / F  be a finite Galois extension and 

let K / F  be a subextension of  L / F .  

(i) K is a decomposi t ion subfield o f  L / F  w.r.t, v iff  K = F n H for some henseli- 

sation H of  (F, v). 

(ii) I f  K is a decomposi t ion subfield o f  L / F  w.r.t, v, say D := G a I ( L / K )  

= {a E G a l ( L / F )  I aOw = 0 ~ }  for some prolongation w o f  v to L, then 

w is the only prolongation of  w [ K to L and v has exact ly  r :-- [K : F] = 
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[GaI ( L / F ) : D] distinct prolongations to L: the 'conjugates'  w o T1, . . . , W o ~-,. o f  

W, where G a I ( L / F )  = U r ~-~D. i = l  

(iii) I f  E l F  is any finite extension with dist inct  prolongations Wl, . . . , Wk o f  v to 

E ,  then, given x l  E 0 ~ 1 , . . . ,  xk  E O~ k, there is some x C E wi th  x - xi  C M ~ ,  

for each i. 

LEMMA :2.8: Given a finite Galois extension Lo/Fo and an embedding  

¢: Gal(Lo/Fo)  ~-+ A into a finite group A,  there is a Galois extension 

(L, w ) /  (F, v) o f  valued fields with L w  ~ Lo, F v  ~- Fo, and G a l ( L / F )  = A such 

that  ¢ (Gal (Lo /Fo) )  is the decomposi t ion subgroup o f  A w.r.t, w. 

(( g ,  w) / ( F, v) is then t a m e  u n r a m i f i e d ,  i.e., the inertia subgroup of  Gal ( L / F)  

w.r.t, w is triviaL) 

Proof: Let L = F o ( T 1 , . . . ,  Td), where d := ~A, say A = {1 = al, a 2 , . . . ,  ad} with 

¢(Gal (Lo /Fo) )  = { e l , . . . ,  e l}  (so f ld) ,  and where T1, . . .  Td are indeterminates 

over Fo. 

Let A act on L by acting trivially on Fo, and via 'left multiplication' on 

{T1, . . . ,Td},  i.e., ak(T1) = Tm ¢~ ak . az = am. Denoting the fixed field un- 

der this action of A on L by F,  it is clear that  L / F  is a Galois extension with 

G a I ( L / F )  = A.  

Now choose x E L0 such that  {a(x) ] a C Gal (Lo /Fo)}  is a normal base for 

Lo/Fo.  Define a ring homomorphism 

~ro: Fo[T1, . . . ,  Ta] -+ Lo 

¢ - l ( a i ) ( x )  f o r i < f  
Ti~-+ 0 for i > f 

with fro I Fo = idFo and extend it to a place 7r: L --+ Lo t2 {c~} (Chevalley) 

with corresponding valuation w. Then L w  ~ Lo and K w  TM F v  TM Fo, where K 

is the fixed field of ¢(Gal (Lo /Fo) )  in L and v := w I F. Moreover, for i > f ,  

ai(Ow) ~ O~ (e.g., T~ 1E Ow, but a i (T~  1) = T~ ¢ 0 ~ ) .  Hence ¢(Gal (Lo /Fo) )  

is the decomposition subgroup of A w.r . t .w.  | 

The lemma, of course, implies that  any finite group A with any subgroup 

D _< A can be realized as Galois group of a Galois extension of valued fields, 

where D becomes a decomposition subgroup. And it is not difficult to see that  

this generalizes to profinite groups. It  may, however, be worth noting that  this 

has no analogue for absolute Galois groups: in general, not any subgroup D of 

an absolute Galois group A = GF can become a decomposition subgroup of A 



Vol. 127, 2002 RELATIVELY PROJECTIVE GROUPS 107 

when A is su i t ab ly  real ized as absolute  Galois  group of some valued field: e.g., if 

2 < [A : D] < oc this  is not  possible.  

LEMMA 2.9: Let (L, w) / (F ,  v) be a tame unramified finite Galois extension of 

valued fields, where F v  is infinite. Then there is a primitive element x E L = F(x)  

over F with irreducible polynomial f E O~[X] over F such that • E Lw is 

a primitive element for L w / F v  and such that f E Fv[X] is the product of 

the irreducible polynomials of  pairwise non-conjugate primitive elements for the 

Gatois extension L w / F v  over Fv.  In particular, i f ( x )  E 0 x . 

Proo~ Let K be the decompos i t ion  subfield of L / F  w.r. t ,  w, let r :=  [K : F] ,  

let T 1 = 1, T2, . . . ,  Tr C a a l ( L / F )  be representa t ives  for the  cosets of aal(L/K) 
in Gal (L /F)  and let wl  :=  w o T1 = w, w2 :=  w o T 2 , . . . , w ~  :=  w o ~-~ be the  

d is t inc t  p ro longa t ions  of v to L. 

Choose Xl E O~ such t ha t  ~ E Lw is a p r imi t ive  e lement  for Lw = Fv(~71) 

over Fv,  and choose a l  :=  1, a2 . . . .  , a t  E O x wi th  N ¢ Wj for i ¢ j ( this 

is possible  as Fv  is infinite).  Then  alXl . . . .  ,arXl are non-conjuga te  pr imi t ive  

e lements  for L w / F v .  

Now choose x E L wi th  x - ~-i(aixl) E A d ~  for i = 1 , . . . , r :  use Fact  2.7(iii). 

Since r~ l ( x )  = a l x l , . . . , r j l ( x )  = a~x,. are non-conjuga te  p r imi t ive  e lements  

for L w / F v ,  the  conjugates  o-T(~(x) of  x in L over F with  a E G a l ( L / K )  ~- 

G a l ( L w / F v )  a n d . / =  1 , . . . ,  r are all  d is t inct ,  so L = L(x)  (as [L :  F]  = r . [ L :  K]) .  

Moreover,  the  i r reducible  po lynomia l  f of x over F is in O~[X], and  f decomposes  

over Fv  into the  p roduc t  of the  i r reducible  po lynomia l s  o f a ~  (i = 1 , . . . ,  r )  over 

Fv,  which are pairwise eoprime,  whence i f (x )  ¢ 0 E Fv.  I 

LEMMA 2.10:  Let (F, v) be a non-trivially valued field, let L / F  be a finite Galois 

extension, let K / F  be a subextension of L / F  of  degree [K : F] = r, and assume 

that v has at most r prolongations to L. 

Then K is a decomposition subfield of  L / F  iff there is a polynomial h (X)  = 

X r + h ~ - l X  "-1 + ""  + ho E F[X] which is irreducible over F, has a root in K 

and coefficients with ho , . . . ,  h,.-2, 1 + hr-1 E Adv. 

Proof.' ' ~ ' :  If h E F [X]  has all the  p roper t ies  ment ioned,  then  K = F(x)  for 

some root  x of h in K ,  and,  by Hensel ' s  Lemma,  x is in some hensel isa t ion  of F 

w.r. t ,  v (v(h(1))  > 0 = v ' (h (1) ) ) ,  i.e., K is conta ined  in a decompos i t ion  subfield 

E of L / F  w.r. t ,  v (Fact  2.7(i)). By Fac t  2.7(ii), v has [ E :  F]  p ro longa t ions  to 

L, so 7" _> [ E :  F]  > [ K :  F]  = r and  hence K = E .  
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' ~ ' :  Let K be a decomposition subfield of L / K ,  say w.r.t, the prolongation 

w of v to L, and let G a l ( L / F )  = U[_i ~- iGal(L/g)  with T1 = 1. Then, by Fact 

2.7(ii) and (iii), there is some y E K with y E (1 + AAw) N f~=2 A4wo~,: note that  

w o ~-i ] K ~ w o Tj ] K for i # j ,  since w is the only prolongation of w ] K to L, 

and so w I K ~ w OTjT/-1 I K.  

Now let z be a primitive element for the extension K / F ( y ) ,  so K = F(y ,  z). 

Since v is non-trivial and F~ is cofinal in all Fwo~, we find infinitely many a E 

A4v C_ F such that  az E ~ = l  A4wo~. As K / F  is finite, there are two such a's, 

say ai # a2 E F,  with F ( a i z  + y) = F(a2z  + y), so y, z E F ( a i z  + y), and hence 

x := a i z  + y is a primitive element for K = F(y ,  z) = F ( x )  over F.  Moreover, 
r x E (1 + A4w)M ~i--2 A4wo~, so T2(X),...,T~(X) E W/w, and the irreducible 

polynomial of x over F: 

r 

h ( x )  = 1 - I ( x  - e FIX]  
i=1 

has coefficients h0 , . . . ,  h~-2 E A4~ and hr_ 1 E - 1  + A4~. I 

3. Free products of  decomposit ion groups 

The goal of this section is to prove the following proposition and a variation of 

it (Proposition 3.7). 

PROPOSITION 3.1: Let  F be a field with absolutely defectless valuation Vl, . . . , vn 

and assume that  for each i, ( F, v~ ) admits  an immedia te  extension ( Fi , ~ ) / ( F ,  vi) 

with ~Fi > ~F. Let  D 1 , . . . , D n  be decomposition subgroups o f  GF w.r.t. 

v i , . . . ,  v,~ respectively. 

Then there is an immedia te  extension (F' ,  v'i, . . . , v~) / (F ,  vi . . . , vn) with ~F' = 

~F such that  CF, = D'i * "  "*D'n, where for each i, D~ is a decomposit ion subgroup 

Of GF, w.r.t, v~ and res: D~ -+ Di is an isomorphism. 

R e m a r k  3.2: In the hypothesis of the above proposition, we may even assume 

that for each i, (b'i,vi) is henselian, is absolutely defectless and contains the 

henselisation Fi of (F, vi) corresponding to D{ = GEt. Moreover, we may assume 

that  G F  -~< D I , . . . ,  D,~ >, i.e., F = F1 M.-.  N F,~. 

P roof  of the remark: First pass to a henselisation (_F~, ~ )  of (F~, ~) .  This is an 

immediate extension a n d / ~  A F sep is a henselisation of (F, vi): since (F, vi) is 

absolutely defectless, any immediate separably algebraic henselian extension is 

a henselisation. So there is an isomorphism P~ N F ~ep --+ Fi over (F, vi) which 
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extends to an isomorphism (_~,, ~ )  --+ (~',', ~ ')  over (F, vi). Thus, (F,', ~ ' ) / (F ,  vi) 

is an immediate henselian extension containing Fi. 

Now we pass to the fixed field/~," of a complement of the ramification subgroup 

of G~,, (cf. Fact 2.1(a)) to obtain an absolutely defectless field. ,(Ft!'~ , ~'!~/(F~ j ~  , vi) 

is still immediate, since passing from F, '  to F,"  means passing to the perfect 

hull for the residue field and passing to the p-divisible hull for the value group 

(p = charFv,  cf. Fact 2.1(d)). As (F, vi) is absolutely defectless, Fv ~- F ;  is 

already perfect and Fv~ ~ F~,, p-divisible. 

Finally, replacing F by F1 A . . .  N F,~ doesn't change any of the hypotheses: 

note that  the assumption that (~'i, vi)/(F, vi) be an immediate extension of higher 
cardinality implies that the valuations v l , . . . ,  v~ are all non-trivial, so all fields 

involved are infinite, and hence all algebraic extensions of the same cardinality. 
| 

Before proving the proposition let us first isolate the key arguments in three 
lemmas. 

LEMMA 3.3: Given an n-fold valued t~eld (F, V l , . . . , v~ )  and decomposition 

groups D 1 , . . . , D n  as in Proposition 3.1 and the remark thereafter, there is 

an immediate extension ( F',  v', . . . , v ' ) / (F ,  v~. . . ,  v,~ ) with ~F' = ~F such that 
! v~ , . . . , v  n are independent, absolutely defectless, and GF, = <  D ~ , . . . , D ~  > 

for decomposition subgroups D~ of GF, w.r.t, v~ for which res: D~ --+ D~ is an 

isomorphism (i = 1 , . . . ,  n). 

Proof: Let X = X I ( 2 . . . O X n  be a (partitioned) set of indeterminates over F 
with ~Xl . . . . .  ~X,~ = ~F. For each i, (F~,~)/(F,v~) is immediate and 

~/~i > ~F, so we find an embedding ¢i: F ( X )  -+ Fi such that ~(¢i(x))  < 0 for 

all x E Xj (j ¢ i) and such that  V'y c Fv~3x E Xi with ~i(¢i(x)) > 7. 

After passing to isomorphic copies of (Fi, ~i) over (Fi, vi) (as in the proof of 
the previous remark), we may for all i = 1 , . . . ,  n, x E X identify ¢i(x) with x, so 

that then X C ~i/~i, and for each i, ~ (Xj )  < 0 when j ¢ i and 9i(Xi) is cofinal 

in F~.  Hence, by Observation 2.4, the valuations on F ( X )  induced by Vl , . . . ,  v,, 

are independent. 

Passing, if necessary, once more to isomorphic copies of (/~i, vi) over 

(Fi(X) ,g i  I Fi (X)) ,  we may even assume that  the relative algebraic closures 

F[ of F~(X) in ~'i are all contained in a fixed algebraic closure of F ( X ) .  By 

Observation 2.3, each F, is then henselian and absolutely defectless (w.r.t. 

IF'). 
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Now let F '  = F~ n . . .  n F~ and, for each i, let v~ :=  vi[ F'. Then,  by Corollary 
/ 2.5, v ~ , . . . ,  % are independent,  and so, by Fact 2.6, each F[ is a henselisation of 

F '  v{/ Hence, by Observation 2.3, res: D~ :=  G G, --+ Di is an isomorphism for , ~ 1 "  ^ 

each i: Fi is relatively algebraically closed in Fi, and so in F/~. | 

LEMMA 3.4 ([HaJ], Proof  of Prop. 14.1, Par t  C, [P1], Thm. 3.1, and [Erl], 

Lemma 1): Let L / K be a finite Galois extension with Galois group B = Gal ( L / K ) 

and let fl: A -+ B be an epimorphism oftlnite groups. Consider the elements of 

A as indeterminates over L and let A act on L(A) via group multiplication on 

A and via the given Galois action of fl(A) = B on L. Assume that  D _< A is a 

subgroup with D N ker fl = 1. 

Then L ( A ) "  :=  {x E L(A) ] a x  = x for all a E D} is purely transcendental 

over L fl(D) . 

LEMMA 3.5: Let ( F , ' V l , . . . , V n )  and D 1 , . . . , D n  satisfy the assumptions of 

Proposition 3.1 and the remark thereafter. Assume, in addition, that either 

v l , . . . , v ~  are independent or that  char Fvi = 0 for all i. Let a :  GF -~ B,  

fl: A -~ B and fli: ol(Di) -+ A (i = 1 , . . . ,  n) be the data  for a reduced locally split 

embedding problem for GF w.r.t. D 1 , . . .  ,Dn, i.e., A, B are finite groups, o~, 

are epimorphisms, /31, . . . , /3,~ are homomorphisms with A = <  im i l l , . . . ,  im fin > 

and, for each i,/3 o ~i = ida(n~). 
• I l . .  V I Then (F, Vl, . .  , Vn) admits  an immediate extension ( F ,  %, .  , n) with ~F' = 

~F, where each (F ' ,  v~) is absolutely defectless and where GF, has decomposition 

.. ' respectively such that G F' subgroups D~, .,Din w.r.t, v ~ , . . . , %  = 

< D~I, . . .D' n >, res: D~ --+ Di is an isomorphism for each i and such that 

the lifted locally split embedding problem for GF, w.r.t. D~I,..., D~ (i.e., o/ :=  

ores: GF, -~ B, fl' :=  fl: A ~ B, fl~ :=  fli ores: a'(D~) --+ A) has a 

locally exact solution (i.e., 3"~': GF, -+ d with ~/' I D~ = fl~ o a' I D~). 

Proof'. Let L = (Fsep) kera be the fixed field o f k e r a  in F sep, so L / F  is a Galois 

extension with Gal (L /F)  ~ B and (identifying those two groups) we may  assume 

that  (~ = res: GF --+ GaI(L/F)  = B. Then, for each i, L ~(D~) = Fi N L. 

Consider the field L(A) with the A-action from the previous lemma. Then  

L ( A ) / L ( A )  A is a Galois extension with Galois group A and, for each i, the con- 

clusion of the lemma (with D = imfli)  says that  the extension L(A) i '~&/L  ~(D~) 

is purely transcendental.  

Since L c~(D~) C ]Fi and ~F~ > ~F = ~L c*(D~), w e  c a n  consider L(A) im~ as 

subfield of -f'i- 
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As before, passing, if necessary, to isomorphic copies of/?i  over FiL(A)  imz~, 

we may even assume that all relative algebraic closures F/~ of FiL(A)  im~ in/~i 

are contained in a fixed algebraic closure of L(A) .  Then, by Observation 2.3, 

each F~ is henselian and absolutely defectless w.r.t. ,5i I F[, res: D~ := GF, --+ Di 

' . ,v~) with ' : = v i  t F ' i s a n  is an isomorphism, and (F '  := F~ N-- .  A/;n t , Vl,..  v i 

immediate extension of (F, v~, . . . ,  vn) with GF, = <  D ~ , . . . ,  D~ > and ~F' = IIF. 

Moreover, each F i' is a henselisation of (F',  v~) (so the D~ are decomposition 
I I groups): if v l , . . . ,  Vn are independent, then so are, by Corollary 2.5, y D . . . ,  v,,, 

and hence, by Fact 2.6, F~ must be a henselisation of (F',  v~); and if char Fv~ = 0 

for all i, then as immediate henselian algebraic extension, F~ is, again, a henseli- 

sation of (F~, v~). 

Now 3 ,! := res: GF, -+ G a l ( L ( A ) / L ( A )  A) = A is a homomorphism with 

~/' I D~ = res: D~ --~ GaI(L(A) / (F~ N L(A))  = im/3i, 

SO 

/3~ 1 o 7' I D~ = a ' I D~ = r es: D~ -~ GaI ( L / ( F~ ~ L ) ) = a(  Di ) <_ B.  

Hence, 3 ,~ is a locally exact solution of the lifted locally split embedding problem. 
| 

Proof  of  Proposition 3.1: The proof of the proposition is now a standard chain 

construction. We may assume from the start that (F, vl • •., v,~) etc. satisfies the 

conditions in the remark following the proposition. By Lemma 3.3, we may also 

assume that v l , . . . ,  vn are independent (this is not necessary if char Fvi  = 0 for 

all i). 

We first find an immediate absolutely defectless extension 

. . . . .  

with ~F 1 = ~F and with decomposition subgroups D~ . . . . .  Dn 1 of GF~ w.r.t. 

v~ , . . . ,  'v nl respectively such that GEl = <  D ~ , . . . ,  D~ >, such that res: D~ --+ Di 

is an isomorphism for each i, and such that each locally split embedding problem 

for GF w.r.t. D 1 , . . . ,  D~ has a locally exact solution when lifted to GF1 w.r.t. 

D I ,  

This is achieved by an ordinal enumeration of these embedding problems 

(EP~)~<), and constructing an (ordinal) chain of absolutely defectless immediate 

extensions (F~, v~ , l , . . . ,  v .... ) / (F,  v l . . . ,  Vn) with ~F~ = ~F, with decomposition 

subgroups D~,i and isomorphisms res: D~# --+ Di (i = 1 , . . . , n )  such that all 
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EPg for # < ~ have a solution when lifted to GF,. For successor ordinals this 

is done by Lemma 3.5, and for limit ordinals by taking unions of the fields con- 

structed 'before' (~F~ never increases since there are only ~F-many locally split 

embedding problems for GF). Note that for # < u < ~, solutions for E P  u lift 

from GFv to GF..  Then (F  1, v l , . . . ,  vn 1) :-- (Fx, vx,1...,  vx,n) has all the required 

properties. 

Now we iterate this process and construct F 2, F 3 , . . .  (with valuations, de- 

composition groups, same cardinality etc.) solving all locally split embedding 

problems for GF i in GF,+I and let F t oo = [ J ~ = l f  (with v~, . . ,  etc.). Then 

~F ~ = ~F, GF, = <  D ~ , . . . , D ~  > and each locally split embedding problem 

for GF, w.r.t. D~, . . .  ,D~ has a locally exact solution. Hence, by Proposition 

1.2, GF, = D~ * . . . * D ~ .  | 

As a consequence, we shall now prove a variant of Proposition 3.1, dropping 

details about immediacy and absolute defect both from hypothesis and conclu- 

sion, but retaining the Galois theoretic data. The reduction of Proposition 3.7 

to Proposition 3.1 proceeds via the following 

LEMMA 3.6: Given a field K, there is an absolutely defectless henselian valued 
field (L, w) with ~L = max{~K, }~o} admitting an immediate extension (L, ~v) 
with ~L > ~L such that K C_ 0~, Lw is the perfect hull of K, F~ is divisible, 
and, hence, res: GL -~ GK is an isomorphism. 

Proof: Choose an infinite set X of indeterminates over K with ~X --- 

max{~K, N0} and fix some well-ordering '< '  on X. Let L = K(X)  and let w be the 

'(X, <) -ad ic '  valuation on L: For any finite subset {xl < x2 < . .-  < xn} C_ X,  
the restriction of w to K ( x l , . . . ,  xn) is (equivalent to) the composed valuation 

w~ 1 ~ .  -- (D w~., where w~ is the x~-adic valuation on the rational function field 

g(x~+l, . . . ,  xn)(xi) in xi over g ( x , + l , . . . ,  xn). To make this consistent, define 

Fw := ( ~  Z • 7~, 
xEX 

where ' ~ '  is the lexicographic sum w.r.t, the (well-)ordering induced by < on 

X under the bijection (x ~-~ "Y~),ez, define w(x) := ~/~ for all x • X and define 

w to be trivial on K.  This uniquely determines a valuation w on L with residue 

field K and value group FT. 

Now the field of formal Laurent series in X over K 

L := g ( ( x ) ) : =  {a = Z a~t~ ]a~ • g & supp(a) is well-ordered} 
7EFT 
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(where supp(a) := {~ E F~ [a~ ¢ 0}) with the canonical henselian valuation 

~ ( a ) : = m i n { ~ f [ a ~ ¢ 0 }  for a l l a =  ~ a~t ~ E L 
7EF~ 

is an immediate extension of (L, w). (Henselianity of ~ is proved, e.g., in [PrC] 
II.5 Satz 4 and III.2 Satz 17.) Moreover, ~]~ > ~L, since any subset Y C_ X is 

well-ordered and, thus, gives an element 

o~y := Z x =  Z t~" E L  , 
xEY xEY 

where a y  ~ ay ,  for Y ¢ Y' C_ X. So ~/~ _> ~{Y c_ X} > ~X-- ~L. 
Finally, replace (L, ~) by the fixed field of the complement of the inertia sub- 

group of GL, and replace (L ,w)  by its relative algebraic closure in the new 
(absolutely defectless henselian) field (L, ~). Then, by Observation 2.3, (L, w) 

is absolutely defectless and henselian, (L, ~v)/(L, w) is still immediate, now with 
divisible value group and the perfect hull of K as residue field. Since K C_ O~, 

there is a commutative diagram 

GL > GLw 

res I 1 ~-res 

GK GK 

and so res: GL -+ GK is an isomorphism as well. | 

It may be worth noting that it was only by the special choice of F~ that 
~K((Fw)) > ~K + ~Fw. If Fw = R, for example, ~K((R)) -- ~K + ~R, since 
well-ordered subsets of R are countable. 

We conclude this section by a variant of Proposition 3.1: 

PROPOSITION 3.7: Let (F, V l , . . . ,  v,~) be an n-fold valued field and let D1, . . . ,  
Dn be decomposit ion subgroups O[ GF w.r.t, vl,  . . . , vn respectively. Then there 

! is an extension (F', Vl,.. .  , v~ ) / ( F, vl , . . . , v~ ) with ~F ~ = max{~F, N0} such that  

G F, TM D~ , . . . ,  Din, where for each i, D~ is a decomposit ion subgroup of  G F, 

w.r.t, v~, and res: D~ -+ Di is an isomorphism. 

Remark  3.8: The extension of n-fold valued fields established in the proposition 

is, in general, no longer immediate, but (as the proof will show) there is a divisible 

ordered abelian group F such that, for each i, 

- - o o  P~ -- F ® ~  p F~, 
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where p = char F (not necessarily char FviI) and p - ~ F . ,  denotes the p-divisible 

hull of F.~ (:= F~ if p -- 0), and F'v~ = Fvi or the perfect hull of Fvi, again 

depending on whether or not char F = 0. 

Proo~ Let (L, w) be the field constructed in the previous lemma from K = F,  

and let wl . . . . .  wn = w. By Proposition 3.1, there is an immediate extension 

(L', w~ , . . . ,  w~)/(L,  w l , . . . ,  w~) with ~L' = fiL = max{~F, ~0} such that  GL, = 

Dw[ * ' "  * Dw-, where for each i, D ~  is a decomposition subgroup of GL, w.r.t. 

' and Pi :--- res: D ~  -+ D ~  = GL -~ GF is an isomorphism. w i , 

Now consider, for each i, the composed valuation w~ ® vi, i.e., the refinement 

of w~ by the unique prolongation of (again denoted by) vi from F to the perfect 

hull ' '  L w i = Lwi : Lw of F.  Let D~ := p~l(Di), let F~ be the fixed field of D~ 

and let F '  -- F~ A- . .  A F~'. 

Then F[ is a henselisation of (L', w~ @ vi), hence of the intermediate field F '  

w.r.t, the induced prolongation v~ ofw~@vi from L' to F ' ,  and res: D~ : :  GF~, -+ 

Di is an isomorphism. Clearly, ~F' = max{fiF, }~0}. And since the subgroup of a 

free product of profinite groups GI* . .  "*Gn generated by subgroups Hi <_ Gi (i : 

1 , . . . ,  n) is the free product of these subgroups: < H 1 , . . . ,  H~ > :  Hi  * . . .  *H~,  

we also have GF, = D~ ~ . . . ,  D ' .  1 

4. P r o o f  o f  T h e o r e m  1 

1. It clearly suffices to prove Theorem I for n = 2. So we are given two fields F1, 

F2 and we want to find a field F with GF TM GEl * GF2, where char F -- char F1, 

provided char F1 = char F2. 

2. It is well-known that the absolute Galois group of a field K of characteristic 

p > 0 can be realized as absolute Galois group of a field L of characteristic 0: 

just make K the residue field of a valuation of mixed characteristic (extend the 

p-adic valuation on Q canonically to a valuation on the purely transcendental 

extension Q(X)  of Q with residue field Fp(X),  where X is a transcendence base 

of K over Fp, and adjoin roots of minimal polynomials of all elements of K over 

Fp(X) lifted to Q(X)) ,  pass to the henselisation L' of L and then to the fixed 

field of a complement of the inertia subgroup of GL, (use Fact 2.1(a)). Hence we 

may assume that char F1 -- char F2. 

3. Since, for any subgroups H1 < G1 and H2 _ G2 of profinite groups G1, 

G2, the subgroup generated by H1 a n d / / 2  (under the canonical embeddings of 

G1, G2) in G1 * G2 is H1 * / /2 ,  and since subgroups of absolute Galois groups 

are absolute Galois groups, it suffices to realize Gk(z) * Gk(y) as absolute Galois 
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group of a field of the characteristic of k, where k = Q or  F p  is the prime subfield 

of/71 and/;'2, and where X and Y are transcendence bases of F1 and F2 over k 

which we may assume algebraically independent. 

4. Now choose valuations v~ and v2 on F = k ( X  U Y)  with Fv~ = k ( X )  and 

Fv~ = k (Y)  and apply Proposition 3.7 to obtain a field with absolute Galois 

group D1 * D2, where Di is a decomposition subgroup of GF w.r.t, vi (i = 1, 2). 

Passing to complements of the inertia subgroups of D1, D2 we obtain, once more 

applying the argument in 3., a field with absolute Galois group Gk(X) * Gk(y). 
| 

By the same arguments as in Step 3 and 4, it is clear that the proof of Theorem 

1 can be reduced to realizing Gk(x) * Gk(x) as absolute Galois group having 

the same characteristic as the prime field k, where X is in an infinite set of 

indeterminates over k. But we do not know whether Gk(x) ~ Gk(x) * Gk(x). 

Theorem 1 has an almost trivial generalisation to 'pro-C Galois groups': Let C 

be an a lmos t  full f ami ly  of finite groups, i.e., C is closed under homomorphic 

images, subgroups and direct products. A pro-C g r o u p  is then an inverse limit 

of groups in C and the free pro-C p r o d u c t  G1 *c "'" *c Gn of pro-C groups 

G1 , - . . ,G~  is a pro-C group G admitting embeddings ci: G~ --+ G such that 

given any homomorphisms 7i: Gi --+ H into a pro-C group H there is a unique 

homomorphism 7: G -+ H with 7i = 7 o ei (i = 1 , . . . ,  n). The pro-C Galois  

g r o u p  GF(C) of F is the maximal pro-C quotient of GF, i.e., the Galois group 

of the compositum of all finite Galois extensions of F with Galois group in C. 

COROLLARY 4.1: Given any fields F1 , . . . ,Fn ,  there is a field F with GF(C) TM 

GF~ (C)*c" • "*CGF, (C). Moreover, F can be chosen to have the same characteristic 

as all Fi, provided they have the same characteristic. 

Proo~ This is, because the maximal pro-C quotient of the free product is the 

free pro-C product of the maximal pro-C quotients. | 

5. R e g u l a r l y  c losed fields 

5.1 REALIZING FREE PRODUCTS OVER REGULARLY CLOSED FIELDS. 

PROPOSITION 5.1: Let (F, v l , . . . ,  vn) be an n-fold valued field with correspond- 

ing hensdisations F1 , . . . ,  Fn. 

T h e n  there is e x t e n s i o ,  (F ' ,  . . . .  , v" ) / ( F ,  v l , .  . . ,  o f    -fotd valued 

' ' the ' such that F'  is regularly closed w.r.t, vl, . . . , v n, v~ are independent and, for 
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each i, there is a henselisation F~ containing Fi where res: GF~, -~ GF~ is an 

isomorphism and GF, ~ GF~ * " "  * GF,. 

Proof: In the proof of Proposition 3.7 we already constructed an extension 

(F' ,  v~, . . . ,  v~)/(F, V l , . . . ,  v~) of n-fold valued fields and, for each i, a henseli- 
sation F.~ of (F', v~) containing Fi such that res: GF: -+ GF~ is an isomorphism 

and GF, ~- GF~ * " "  * GF,. Moreover, by the way how Proposition 3.1 was used 
! I in the proof of Proposition 3.7, v l , . . .  , v~ were independent and, for each i, there 

was an immediate embedding F~ ~ / ~ i  of absolutely defectless henselian valued 

fields where ~Fi > ~F~, and, again, res: GI~ i -+ GF: was an isomorphism. 
It now suffices to find a regularly closed extension (F",v~',. . . ,v'n') of 

( F ' , v l , . . . , v ' )  with F" = F~ ' f~ . . .  M F'n ~ where each (F",v~') embeds (as 
valued field) into/?i and where F "  is the henselisation of (F",  v~') correspond- 

ing to the relative algebraic closure of the embedding of F"  in Fi. For then 

res: GF~,, -+ G ~  is an isomorphism for each i, and so res: GF,, --~ GF, is an 
isomorphism as well: surjectivity is clear since GF, is generated by the GF~,. And 
since GF, ~- GF:*" "*GF,  there is a (unique) homomorphism res- l :  GF, -+ GF,, 
induced by the local inverses rest-l: GF~, -+ GF~,, with res o res -1 = idcF,. As 
GF,, is generated by the GF,,, res -1 is surjective and hence res is injective. 

To find (F", v~l,..., v'n') one proceeds exactly as in the proof of [HP], Theorem 
3.1. By [HP], Theorem 1.8, it suffices to satisfy the local-global principle for 
rational points on affine plane curves. So using a standard chain argument (as 
in the proof of Proposition 3.1), the crucial step is to find, given an absolutely 

irreducible polynomial f ( X ,  Y)  E F'[X, Y] with a simple zero (ai, bi) in each F ' ,  
a regular n-fold valued field extension of (F t, v~, . . . ,  v ' )  of the cardinality of F '  
which embeds in each Fi (as valued field w.r.t, the corresponding prolongation 

of v~) and which has a zero of f .  
To achieve this, it obviously suffices to embed the function field F'(x ,  y) (where 

(x, y) is a generic point of the curve) into each Fi. But this is easy since ~F~ > ~F~: 
the point (ai, bi) is simple, say 

df (ai, bi) ¢ 0; 
d Y  

choose ~ E Fi \ F/~ with di(e) big enough to guarantee that 

d] 
~i(f(ai + e, bi)) > 2gi(-~-~(ai + e, bi)) ; 

then a~ := a~ + e E Fi is transcendental over F '  and, s ince/~ is henselian, there 
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is some b~ • Fi with f(a~, b~) = 0; the embedding of F'(x ,  y) over F '  into/~i is 

now given by mapping (x, y) ~+ (a~, b~). | 

The following Corollary states one direction of Theorem 2' (the other direc- 
tion is Theorem 2). Both Proposition 5.1 and Corollary 5.2 easily follow from 
[Pol], Theorem 3.4 (where the hypothesis should be 'strong projectivity', not 

just 'projectivity') and Theorem 2.6. 

COROLLARY 5.2: Let G be a profinite group which is strongly projective relative 

to subgroups G1, . . . ,  Gn and assume that each Gi is isomorphic to an absolute 

Galois group. Then there is a regularly closed n-fold valued field (F, v l , . . . ,  v~) 

with V l , . . . ,  vn independent and there is an isomorphism ¢: G --+ GF such that 

for each i, ¢(Gi) is a decomposition subgroup Of GF w.r.t, vi. 

Proof'. We will first construct an n-fold valued field (F, v l , . . . ,  vn) satisfying 

all stated properties except being regularly closed. To this end let Gn+l be a 

free profinite group with rkG,~+l = rkG.  Then G,~+I is an absolute Galois 

group as well and we find, as in the proof of Theorem 1, an (n + 1)-fold valued 

field (K, Wl , . . . ,  w,~+l) with GK TM G1 * " "  • Gn+l, where the free factors Gi 

are decomposition subgroups of GK w.r.t, wi, where the wi are independent 

and where each (K, wi) allows immediate extensions of higher cardinality. Let 

7r: GK -+ G be an epimorphism identifying the free factors G1 , . . . ,  G~ with the 

correpsonding subgroups of G and projecting G~+I onto G. As G is strongly 

projective relative to G1, . . .  G~, there is a splitting ¢: G -+ GK of ~- with ¢(Gi) 

conjugate to the factor Gi in (Tg (for i = 1 , . . . ,  n). Now let (F, Vl , . . . ,  v~) be the 
fixed field of ¢(G) where each vi is induced from the henselisation Fi of (K, wi) 

with GFi = ¢(Gi). 
Here we continue as in the previous proof. Given a curve C over F with Fi- 

rational points we find immediate prolongations of Vl , . . . ,  v~ to the function field 

L = F(x ,  y) of C with henselisations Li containing Fi such that res: GL~ --+ GF~ 

is an isomorphism for each i. By strong projectivity, again, the epimorphsim 

res: G L --~ e f  has a splitting ¢: a f  -+ e L .  Let (F t , v~ , . . . , v~ )  be the fixed 

field of ¢(GF) with v~ induced from henselisations F~ with GE i = ¢(GF~). Then 

res: GF, -+ GF and res: GEl -+ GF~ (i = 1 , . . . ,  n) are isomorphisms and C has 
an F'-rational point. 

Finally, again, a chain of such extensions leads to the desired regularly closed 
field. | 
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5 . 2  T H E  A B S O L U T E  G A L O I S  G R O U P  OF REGULARLY CLOSED FIELDS. 

5.2.1 Solvability of embedding problems is existential. Let us recall that a (finite) 

e m b e d d i n g  p r o b l e m  for a profinite group G is given by a pair of epimorphisms 

c~: G --~ B, fl: A --~ B (where A and B are finite groups). A so lu t ion  resp. a 

p r o p e r  so lu t ion  of the embedding problem is a homomorphism resp. an epi- 

morphism 7: G --+ A such that a = /3  o 7. 

OBSERVATION 5.3: Solvability of a finite embedding problem for the absolute 

Galois group GF of a feld F can be expressed by an existential (frst-order) 

formu/a in the Mnguage of felds with parameters from F.  

Let a: GF ~ B,/3: A ~ B be the data of a finite embedding problem for GF. 

Let E := F i x k e r a  be the fixed field of the kernel of a and let ¢: G a l ( E / F )  -+ B 

be the unique isomorphism making the diagram 

G F -  GF 

aal (E/F)  * . e 

commute. We first prove the following 

CLAIM: The above embedding problem has a proper solution iff there is a Galois 

extension L / F  containing E and an isomorphism ¢ : Ga l (L /F)  --+ A such that 

the following diagram commutes: 

Gal (L /F)  * > A 

r e s L / ~  1~ t ~ 

C a l ( E / F )  ¢ > B 

To prove the claim, assume first that the embedding problem has a proper solu- 

tion 7: GF -~ A. Then the field L := Fix  ker 7 is a Galois extension of F contain- 

ing E (since ker3~ C_ ker a) and there is a unique isomorphism ¢: GaI(L/F)  -~ A 

making the top square of the following diagram commute: 

GF GF 

re8 Fsep / L j~ 1 "[ 

Val(n/F) > A 

r sLJ  1 

aaZ(E/F) * . B 
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Since c~ --/3 o ~/and r e s F ~ e p / E  : resL/E o resF~eP/L  , the outer square commutes  

as well and, hence, so does the bo t t om square. 

For the converse, assume there is a Galois extension L / F  containing E and an 

isomorphism ¢: GaI(L/F) --+ A making the b o t t o m  square of the d iagram above 

commute• We define ~/:-- ¢ o resFs~p/L, so tha t  the top square commutes.  Then  

~/: GF --+ A is an epimorphism and 

O~ • ~2 o re sF~¢p /E  ~- ¢ o r e s L / E  o r e s F s e p / L  ~- (/~ o ¢)  o ( ¢ - 1  o,7) = / ~  o "7. 

The claim is proved. 

Our  next step is to express the existence of a Galois extension L / F  as described 

in the claim by an 'a lmost  existential '  formula in the language of fields {+,  x,  0, 1} 

(allowing parameters  from F) .  We first express tha t  there is a Galois extension 

L / F  with Gal(L/F)  ~ A. This is equivalent to the existence of an irreducible 

(monic) polynomial  f • FIX] of degree d :=  ~A such tha t  the F-a lgebra  F[Z] / ( f )  

contains d distinct zeros X l , . . . , X d  of f where, for each k, the map xl  ~-+ xk 

induces the permuta t ion  ak of { X l , . . . ,  Xd} corresponding to the permuta t ion  of 

A = {al = 1, a2 . . . .  , ad} given by left multiplication with ak: then L = F(Xl)  = 

. . . .  F(x~) is a Calois extension with Gal(L/F)  "~ A. The elements of  the 

F-a lgebra  F[X] / ( f )  can be regarded as d-tuples of elements of F 

ro + r l X  + . . .  + r d _ l X ~ - l / ( f )  ~+ (r0,..., r~_l), 

addit ion is componentwise and multiplication is expressible via polynomials  in 

the coefficients (only depending on the coefficients of f ) .  Therefore, the existence 

of a Galois extension L / F  with Gal(L/F)  ~- A is equivalent to the formula 

3c, x l , . . . , x d ,  u • F ~ : ~(c, x l , . . . , x ~ , u ) ,  

where 

d 

• (c, ~ ,  = A/ (xk) = 0 A u•  H ( x k  - x,) = 1 
k=l  k¢l  

• ~ X X d - 1  A A Xl,° ~- X l , lXk  ~- " " 1- l ,d-1 k : Xm 

k,l,m:ak "at=am 

A fc is irreducible. 

Here xz = (Xl,o,...,Xt,d-1) and, for c = (Co,...,Cd-1) • F e, 'f~' denotes the 

polynomial  f c (X)  = X d + Cd-1Xd-1 Jr''" ~- C 0. Of course, addit ion and multipli- 

cat ion on F 4 occurring in the formula are induced from the F-a lgebra  F [ X ] / ( £ )  
and 1 = (1,0 . . . .  ,0) • F d. 
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To express all properties of L / F  required by the claim, let E = F(~) and 

let g E FIX] be the irrducible polynomial of ~ over F,  say deg g = e, and let 

~1 = ~, ~2,- . . ,  ~ be the conjugates of ~ over F.  Then the existence of a Galois 

extension L / F  containing E and of an isomorphism ¢: Gal (L /F )  -+ A with 

o ¢ = ¢ o resL/E is equivalent to the formula 

3C, Xl , . . . ,Xd ,  U, Z l . . . , z ~  E F d : ~(C, X l , . . . , x ~ , u )  A k0(c, x l , . . . , X d ,  Zl . . . .  ,z~), 

where 

• g(z )--oA A 
5=1 j~j '  

A A z~,,o + z~,,lxj,, + . . .  + z~, d_ix~.  ~ = z~ 

JJ',J":¢-~(~(~"))(¢~')=¢5 

Again, addition and multiplication on F d occurring in the formula are inherited 

from F[X]/ ( fc ) ,  and zy -- (zj , ,0 , . . . ,  Zj,,d-1). 

The formula which expresses proper solvability of our embedding problem is 

existential except for the phrase 'f~ is irreducible' in the formula (I). I t  may 

now come as a minor surprise that  the most naive way of making the formula 

existential - -  delete 'f~ is irreducible' - -  works, provided F is infinite. Yet for 

finite fields F,  GF ~ Z is projective, and so every embedding problem has a 

solution (and any formula true in F is equivalent to that  truth). Hence, from 

now on, F is assumed to be infinite. 

So let us first assume that  the new formula holds for F,  say with c, x l , . . . ,  

Xd, u, Z l , . . .Ze  E F d witnessing this. Then A may be considered as a group of 

F-algebra automorphisms of the d-dimensional F-algebra 

L'  := F[X]/( f~)  = F ( x l )  . . . . .  F(Xd). 

For each irreducible factor f of f~ over F,  the canonical F-algebra epimorphism 

r: L' -~ L := F [ X ] / ( f )  

maps the d distinct zeros x l , . . . , X d  of fc in L '  to d distinct zeros of fc in the 

field L: 

~(u) .  H ( ~ ( X k )  -- ~(xl)) = r ( u "  H ( x k  -- xl)) = ~(1) = 1. 
k¢l  k¢l  

Hence, fc is a separable polynomial and 

L = F ( r ( x l ) )  . . . . .  F(Tf(Xd)) 
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is a Galois extension of F: the splitting field of f~ over F.  (So all irreducible 

factors of f~ over F generate the same field extension L/F.)  Moreover, E C L, 

since g(Tr(zl)) = 7r(g(zl)) = 0. It  is also easily checked that  

G : = { a c A I  a(ker~r) C_ ke r r }=  {a • A I f(Tr(a(X + (f~)))) =O} < A 

and that  
r*: G ~ Gal(L/F) 

era: L -+ L a~-+ 
X +  (f) ~+ ~r(a(X + (fc))) 

is a well-defined isomorphism: note that  A acts simply transitive on the zeros of fc 
in L ~, that  G acts simply transitive on the zeros of fc in L'  which become zeros of 

f in L, and so 7r*(G) acts simply transitive on the zeros o f f  in L. So ¢ :-- (r*) -1 

embeds Gal(L/F) into A, and the formula ~ implies that  fi o ¢ = ¢ o resL/E. 

For the converse, assume L / F  is a GMois extension containing E with an 

embedding ¢: GaI(L/F) -+ A such that  f io¢  = ¢oresL/E. Now use Lemmas 2.8 

and 2.9 to find a tame unramified Galois extension (M, w)/ (g ,  v) of valued fields 

with GaI(M/K) TM A, Mw TM L, Kv ~ F and a primitive element x E M = K(x) 
over K with irreducible polynomial f c (9~[X] over K such that  f ' (x) E (9 x. 
Then the polynomial fc := ] C FIX] is separable and the action of A on the zeros 

of f in M induces an action of A on the zeros of f~ in the F-algebra F[X]/(f~) 
fulfilling our formula: 

If w l , . . . ,  wr are the distinct prolongations of v to M,  then all zeros of f are in 

(_0w 1A.- . N O ~ ,  and A permutes the d distinct zeros of f in each O~oj. Thus A acts 

simply transitive on the corresponding (tuples of) zeros of f in the (.9,-algebra 

O~1 × . . .  x Owr, and, via the canonical ring epimorphism 

0~, x ... x 0 ~  --, Mwl  x ... x Mw~ TM F[X]/(f~), 

on the corresponding zeros x l , . . . ,Xd  of f~ in F[X]/(fc). In particular, 

1-Ik#l(Xk -- xl) is a unit in F[X]/(f~) since 

l - I  (ak(x) - a,(x)) c n . - .  n Co . , 
ak#alEA 

The idea to consider 'Galois-algebra extensions' rather than just field extensions 

when dealing with embedding problems for absolute Galois groups already occurs 

in Hasse's 1948 paper  [Hs], section 1. 
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PROPOSITION 5.4: Let (F, v l , . . . , vn )  be an n-fold valued field with henselisa- 
tions F1, . . . ,  Fn c_ Fs~P. Then 'locally conjugate solvability' of a finite locally 

split embedding problem for GF w.r.t. GF~,..., GF~ can be expressed by an ex- 

istential formula in the language of n-fold valued fields with parameters from 

F. 

Proo~ Let a: GF --~ B, /3: A -~ B, ~i: a(GF~) --+ A (i = 1 , . . . , n )  be the data  

of a finite locally split embedding problem for GF w.r.t. GEl, . . . ,  GF~, i.e., A, B 

are finite groups, a ,  /3 are epimorphisms, and the/3i are homomorphisms with 

/3 o/3~ = id~,(cF~ ). 
As in the proof of Observation 5.3, we let E = Fix ker a be the fixed field of 

the kernel of a,  we let ¢: Gal(E/F)  ~ B be the unique isomorphism making the 

diagram 

GF - -  GFi 

1 
GaI(E/F) ¢ , B 

commute and first prove the following 

CLAIM: The above embedding problem has a proper locally conjugate solution iff 

there is a Galois extension L / F containing E and an isomorphism ¢: Gal( L / F) --~ 

A such that the diagram 

Gal(L/F) • ~" A 

reSL/E l( 1 ~ 
Cal(E/F) ¢ B 

commutes and ¢-1 (ira/?i) is a decomposition subgroup of Gal(L/F) w.r.t, vi for 

each i. 

' ~ ' :  Since a proper locally conjugate solution 7 of a locally split embedding 

problem is, in particular, a proper solution of the embedding problem given by 

a,/3, we can construct L and ¢ as in the proof of Observation 5.3. So we only have 

to check that,  for each i, ¢-1(im/3i)  is a decomposition subgroup of GaI(L/F) 

w.r.t, vs. But this follows since 

¢-I(.),(GF~)) = resF~eP/L(GF~) = GaI(L/L N F~) 

is a decomposition subgroup of Gal(L/F) w.r.t, vi and is conjugate to ¢-1 (im/3i) 

in Gal(L/F).  
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' ~ ' :  For the converse, the claim in the proof of Observation 5.3 already pro- 

vides an epimorphism 7: GF --~ A with a = /3 o V- Then, for each i, both 

¢- l ( im/3s)  and ¢-1(7(GF~) ) = GaI(L/L N Fi) are decomposition subgroups of 

GaI(L/F) w.r.t, vi. Hence, they are conjugate in Gal(L/F)  and so i m ~  and 

7(Gs~) are conjugate in A, i.e., 7 is a locally conjugate solution and the claim is 

proved. 

Since any solution V of an embedding problem is a proper solution of the 

modified embedding problem where A is replaced by im 7, the claim provides also 

a criterion for locally conjugate solvability of the given locally split embedding 

problem: it is the criterion of the claim except that  ¢ is only required to be an 

embedding such that ,  for each i, there is some as E A with (irn/3i) ~ c_ i m ¢  and 

with the property that  ¢ - l ( ( i m  fl~)~') is a decomposition subgroup of Gal(L/F)  

w.r.t, vs. 

Our next step, again as in the proof of Observation 5.3, is to express proper 

locally conjugate solvability by an 'almost existential' formula in the language of 

n-fold valued fields, and we may take the formula 

~ C , X  1 . . . .  , X d , ' t t ,  Z l , . . . , Z  e E F d  : (~(C, X l , . . . , X d ,  U ) A~/~(C, X l , . . . , X d ,  Z I , . . . , Z e )  

from the proof of Observation 5.3 to express existence of a Galois extension L / F  

containing E and an isomorphism ¢: GaI(L/F) -+ A such that  ¢ o resL/E : 

o ¢. So we only have to express that,  for each i, ¢ - l ( im/~i )  is a decomposition 

subgroup of Gal(L/F)  w.r.t, vi. 

To achieve this for one i, let K be the fixed field of ¢ - l ( im/~i )  in L. Then K N E  

is the fixed field of ¢-I(c~(GF,))  in E,  i.e., K N E = Fs N E is a decomposition 

subfield of E l F .  Hence v has exactly [K n E : F] prolongations to E (Fact 2.7 

(ii)), and thus at most r := [L : E ] .  [K N E : F] prolongations to L. Since 

fli: a(GF~) -~ A is injective, in :  K] = ~imgi = ~c~(GF~) = [E:  g n El, and so 

[L: KA E] 
r = [ L : E ] . [ K N E : F ] =  [E ~ K N E] " [K N E : F] 

__[L:K]'[K:KNE].[KNE:F]=[K:F]. 
[E: K n E] 

Lemma 2.10 now says that  K is a decomposition subfield of L / F  (i.e., that  

¢ - l ( imf i s )  is a decomposition subgroup of Gal(L/F))  w.r.t, vs iff there is a 

polynomial h(X)  = X"  + t,._~X "-~ + . . .  + to • F[X] such that  h is irreducible 

over F,  has a root in K and satisfies t0,. - -, t~-2, ] + t,~-i c Alive. 

Under the identification L ~- F[X]/(f~:) ~ F d used in the formula already 

imported from the proof of Observation 5.3, this is expressed, for each i, by the 
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existential formula 

3yi E Fd3hi, wi C Fr~Oi(c, x l , . . . ,  Xd, Yi, hi, wi), 

where 

Oi(c, x l , . . . ,  Xd, Yi, hi, wi) = A ak(yi) = Yi 
k:ak Elm 151 

A H (ak(y i ) -az(y i ) )  E F × 
k ~ l c S ,  

h ri--1 A yr~ + i,r,-lYi + " "  + hi,o -- 0 

A hi ,o, . . . ,  hi,r~-2, 1 + hi,r~-I E .M,,~ 
W r i - - l \  A gi(wi,o + wi,iyi + "" • + i,r~-iYi ) = 0 

A V PJ qj det((zl Yi )l<j<_d)# 0, 
p,qe{1,...,d} d 

x d - 1  where ak(yi) := Yi,o + yi,lxk + "'" + Yi,d-1 k , where Si C_ { 1 , . . . , d }  such 

that  the ak with k E Si form a system of coset representatives of A / i m  ~i, where 

ri := ~A/~im ~i, and where gi is the irreducible polynomial of a primitive element 

of Fi h E  over F.  Note that the first two lines of Oi express that F(yi) is the fixed 

field of ¢ - l ( i m  ~ )  and that  hence the polynomial X ~ + hi ,r ,_lX ~-1 + . . .  + hi,o 

is the irreducible polynomial of Yi over F.  Moreover, formulas of the type t E O~ 

and t E AJv are existential in the language of valued fields: 

t C O ~  ¢ = : V t E O v A 3 t ' E O ~ : t . t ' - - - - 1 ,  

t E M ,  ~ t E O ,  A 3t ~ ~ O~ : t . t  ~ = 1. 

The existential formula expressing locally conjugate solvability of our locally split 

embedding problem is now 

3C, Xl , . . .Xd,  U, y l , . . . , y n ,  z l , . . . , Z e  C Fd3hl ,wl  C F ~ . . . 3hn ,wn  E F ~ : 

O'(c, xl ,  ..,Xd, U) A q~(c;xl, ..,Xd, Zl, ..,z~) A A Oi(c, x l ,  ..,xd, yi, hi, wi), 
i = l  

where q)' is the formula q) except that  the phrase 'f~ is irreducible' is deleted. 

Note that  we may assume F to be infinite, since otherwise all valuations are 

trivial and hence any locally split embedding problem trivially solvable. 

If the existential formula holds, then we obtain a solution of our locally split 

embedding problem, as in the proof of Observation 5.3, by considering the F-  

algebra L' := F[X]/(f~), an irreducible factor f of f~ over F,  and the F-algebra 
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epimorphism ~r: L '  --~ L := F[X] / ( f )  onto the Galois extension L / F  with 

Gal (L /F)  ¢ A < An te  L', where /~ o ¢ = ¢ o reSn/E. We have to check that, 

for each i, im ¢ contains a conjugate of im ~i in A, and that the corresponding 

subgroup of Gal (L /F)  is a decomposition subgroup of GaI(L/F) .  

So let us focus on one i, and observe that the polynomial hi C FIX] of degree ri 

has ri distinct roots in L': the elements ak(yi) with k E Si and that the condition 

in the second line of Oi is carried over to L by 7r. Hence, hi has ri distinct zeros 

in L. It is easily checked that exactly one irreducible factor h of hi over F is 

of the shape X ~ + t r _ l X  ~-1 + • .. + to with to , . . . ,  tr-2, 1 + tr-1 E J~v~. So we 

may assume (after replacing Yi by a suitable ak (Yi) - -  this is fixed by a subgroup 

conjugate to imfli in A, namely ( im~i)  ak) that h(Tr(yi)) = O. 

Then K := F(lr(yi)) contains a zero of gi (i.e., a decomposition subfield of 

E l F  w.r.t, vi), and is itself (by Hensel's lemma applied to h) contained in some 

henselisation (F, vi). Hence K N E is a decomposition subfield of E w.r.t, vi. 

Moreover, the last line of (~i means that L'  = F(Zl, Yi), so 

L = r(L ' )  = 7r(F(zl))Tr(F(yi)) = EK.  

Thus, res: G a l ( L / K )  --+ G a I ( E / E  N K)  is an isomorphism and K is a decompo- 

sition subfield of L / F .  Finally, ¢(Ga l (L /K) )  < im~i ,  as G a l ( L / K )  fixes ~r(yi), 

and since 

~Gal(L/K)  = ~Gal(E/E M K)  = ~(~(GF~) = ~im ~i 

equality holds. 

Conversely, assume that L / F  is a Galois extension containing E, that 

¢: G a l ( L / K )  -+ A is an embedding with ~ o ¢ = ¢ o resL/E and that, for each i, 
there is some ai C A such that (irnfli) ai C_ i m ¢  and such that ¢-l(( im~i)  ai) is 

a decomposition subgroup of Gal (L /F)  w.r.t, vi. Once again quoting from the 

proof of Observation 5.3, we find a tame unramified Galois extension 

(M, w ) / ( K ,  v) of valued fields with G a l ( M / K )  TM A, M w  ~ L, K v  ~ F and a 

primitive element x c M = K(x )  over K with irreducible polynomial f C Ov[X] 

over K such that f ' ( x )  E Oxw and such that the action of A on the distinct ze- 

ros of the polynomial fc := ] C FIX] in the F-algebra F[X]/( fc)  satisfies the 

formulas (I)' and ko. 

So only Oi remains to be checked for each i. To this end, choose y C L such 

that F(y)  is the fixed field of (im/~i) a~ in L and the irreducible polynomial of y 

over F is of the form X r + t r _ l X  ~-1 + . . . + t o  with t 0 , . . . , t ~ - : , l + t ~ - i  C A/Iv~ 

(Lemma 2.10). Let w l , . . . ,  ws be the distinct prolongations of v to M, choose 
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distinct a2 , . . . ,  as c AJv~ \{0} ,  and, by Fact 2.1(iii), choose Yi C M with 

Yi C (Y + J~Wl) n (a2y+M~:) f " l  ' ' '  n (asy+A/[w.). 

Then K(~)i) is the fixed field of (im~i) ~ in M and the irreducible polynomial 

]~i C K[X] of Yi over K has coefficients in O, and the induced polynomial hi := hi 

over F has coefficients h~,0,... ,  hi,r~-2, 1 -t- hi,r~-i E J~,t,~. Moreover, hi has ri 

distinct zeros in L (which gives the second line of Oi). And, finally, L' -= F(Zl, y~) 

since M -- K(z~l, !]/), where zl E C0w is a lifting of zl in M. | 

As an application of independent interest let us mention the following 

Corollary, which might be helpful for the question whether the inverse Galois 

problem for Q is decidable: note that there is still a chance that the existential 

theory of Q be decidable. 

COROLLARY 5.5: Let F be a number field and let F 1 , . . . ,  Fn be henselisations 

w.r.t, n distinct primes on F. Then locally conjugate solvability of a locally split 

embedding problem for GF w.r.t. GF1, . . . , GF~ is a diophantine property, i.e., 

equivalent to an existential first-order formula in the language of fields. 

Proof: This is just a combination of our Proposition 5.4 with Rumely's existen- 

tial definability of valuation rings in number fields ([Ru], Theorem 1). | 

Another immediate consequence is the following 

. .  V ! COROLLARY 5.6: Let (F, vl, . ,vn) and (F ' , v~ , . . . ,  ~) be n-fold valued fields 

which are elementarily equivalent in the language of n-fold valued fields. Then 

GF is the free product of suitable decomposition subgroups (w.r.t. v l , . . . ,  v,~) iff 

the same is true for GF,. 

Proo~ This is immediate from the claim in the proof of the above proposition 

together with Proposition 1.3. | 

5.2.2 Proof of Theorem 2. In order to prove Theorem 2 we will use the following 

model theoretic characterisation of regularly closed fields: 

FACT 5.7: An n-fold valued field (F, vl, . . . , vn) with pairwise independent valu- 

ations and with corresponding henselisations F1 , . . . ,  Fn is regularly closed w.r.t. 

vl, .  •. ,  v,~/if(F, vl , .  • •, v~) is existentially dosed (in the language of n-fold valued 

fields) in any regular extension (F', v~ , . . . ,  v~) provided each Fi is existentially 
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closed in some (any) henselisation F~ of (F', v~) containing Fi (in the language 

of valued fields). 

Proof: This is Theorem 1.9 together with Theorem 4.1 of [HP]: note that the 

general assumption made in [HP] that F should be of characteristic 0 does not 

enter the proof of those two Theorems. | 

Proof of Theorem 2: Let (F, v l , . . .  ,v~) be a regularly closed n-fold valued 

field where v l , . . . , V n  are pairwise independent, and let F 1 , . . . , F n  be corre- 

sponding henselisations. In order to show that GF is relatively projective w.r.t. 

GF1 , . . . ,  GF,,, we have to show, by Proposition 1.4, that any finite locally split 

embedding problem for GF w.r.t. GF1,. . . ,  GF, has a locally conjugate solution. 

So let a: GF ~ B, ~: A -~ B, ~i: a(GF~) --~ A (i = 1 , . . . , n )  be the data of 

such a finite locally split embedding problem. Using the above fact together with 

Proposition 5.4, it suffices to find an extension (F', v ' l , . . . ,  v~)/(F, V l , . . . ,  vn) 

and, for each i, a henselisation F~ of ~(F ~, v'~ij containing F~, such that F~/F is 

regular, /7/is existentially closed in F[ (in the language of valued fields) and such 

that the locally split embedding problem (lifted via res: GF, ~ GF to GF,) has 

a locally conjugate solution. 

To achieve this, we have to adjust the proof of Lemma 3.5 to our situation. 

Let, for each i, Fi* >-_ F~ be an elementary extension (of valued fields) such that 

~F* > ~F~. Let L be the fixed field of ke ra  in F sep, and, after the canonical 

identification, Gal(L/F)  = B, a = res: GF --+ Ge i (L /F)  = B and L~(GF~ ) = 

LNF~. 

Consider the field L ~ := L(A) with the A-action of Lemma 3.4, and let F t := 

L(A) A be the fixed field under this action. Then L~/F ~ is a Galois extension 

with Galois group A, F~/F is regular, and, for each i, L ' i m ~ / L  A Fi is purely 

transcendental, so we may consider L ~im~ as subfield of F* and denote the 

Now let F[ be the relative algebraic closure of F ~ induced valuation on F ~ by v i. 

in F~* and observe that then Fi C F ~ _ ~, that Fi is existentially closed in F~ (because 
it is in F*) and that  L' N F* = L ' im~.  Therefore, res: GF, --4 A = GaI(L' /F')  

gives rise to a solution of our lifted locally split embedding problem, which, in 

particular, is a locally conjugate solution. | 
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